Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioscience ; 74(4): 253-268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38720908

RESUMO

Managing coastal wetlands is one of the most promising activities to reduce atmospheric greenhouse gases, and it also contributes to meeting the United Nations Sustainable Development Goals. One of the options is through blue carbon projects, in which mangroves, saltmarshes, and seagrass are managed to increase carbon sequestration and reduce greenhouse gas emissions. However, other tidal wetlands align with the characteristics of blue carbon. These wetlands are called tidal freshwater wetlands in the United States, supratidal wetlands in Australia, transitional forests in Southeast Asia, and estuarine forests in South Africa. They have similar or larger potential for atmospheric carbon sequestration and emission reductions than the currently considered blue carbon ecosystems and have been highly exploited. In the present article, we suggest that all wetlands directly or indirectly influenced by tides should be considered blue carbon. Their protection and restoration through carbon offsets could reduce emissions while providing multiple cobenefits, including biodiversity.

2.
Carbon Balance Manag ; 10: 15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26191081

RESUMO

BACKGROUND: In the lower Mekong Basin and coastal zones of Southern Vietnam, forests dominated by the genus Melaleuca have two notable features: most have been substantially disturbed by human activity and can now be considered as degraded forests; and most are subject to acute pressures from climate change, particularly in regards to changes in the hydrological and sodicity properties of forest soil. RESULTS: Data was collected and analyzed from five typical Melaleuca stands including: (1) primary Melaleuca forests on sandy soil (VS1); (2) regenerating Melaleuca forests on sandy soil (VS2); (3) degraded secondary Melaleuca forests on clay soil with peat (VS3); (4) regenerating Melaleuca forests on clay soil with peat (VS4); and (5) regenerating Melaleuca forests on clay soil without peat (VS5). Carbon densities of VS1, VS2, VS3, VS4, and VS5 were found to be 275.98, 159.36, 784.68, 544.28, and 246.96 tC/ha, respectively. The exchangeable sodium percentage of Melaleuca forests on sandy soil showed high sodicity, while those on clay soil varied from low to moderate sodicity. CONCLUSIONS: This paper presents the results of an assessment of the carbon stocks and sodicity tolerance of natural Melaleuca cajuputi communities in Southern Vietnam, in order to gather better information to support the improved management of forests in the region. The results provide important information for the future sustainable management of Melaleuca forests in Vietnam, particularly in regards to forest carbon conservation initiatives and the potential of Melaleuca species for reforestation initiatives on degraded sites with highly sodic soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...