Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683793

RESUMO

A nanocomposite with erbium-doped graphene quantum dots embedded in highly porous coffee-ground-derived biochar (Er-GQD/HPB) was synthesized as a promising electrode material for a highly efficient supercapacitor. The HPB showed high porosity, with a large surface area of 1295 m2 g-1 and an average pore size of 2.8 nm. The 2-8-nanometer Er-GQD nanoparticles were uniformly decorated on the HPB, subsequently increasing its specific surface area and thermal stability. Furthermore, the intimate contact between the Er-GQDs and HPB significantly reduced the charge-transfer resistance and diffusion path, leading to the rapid migration of ions/electrons in the mesoporous channels of the HPB. By adding Er-GQDs, the specific capacitance was dramatically increased from 337 F g-1 for the pure HPB to 699 F g-1 for the Er-GQD/HPB at 1 A g-1. The Ragone plot of the Er-GQD/HPB exhibited an ultrahigh energy density of 94.5 Wh kg-1 and a power density of 1.3 kW kg-1 at 1 A g-1. Furthermore, the Er-GQD/HPB electrode displayed excellent cycling stability, and 81% of the initial capacitance remained after 5000 cycles. Our results provide further insights into a promising supercapacitance material that offers the benefits of both fast ion transport from highly porous carbons and electrocatalytic improvement due to the embedment of Er-doped GQDs to enhance energy density relative to conventional materials.

2.
Talanta ; 237: 122957, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736682

RESUMO

The development of an efficient protein-inorganic nanohybrid with superior nanozyme activity for highly sensitive detection of glutathione (GSH) is essential for early diagnosis of human diseases. Herein, a rapid and highly sensitive colorimetric assay using self-assembled bovine serum albumin-hydrated manganese phosphate nanoflowers (MnPNF) as a biomimic oxidase is developed for GSH detection in human serum. The BSA can complex with Mn2+ to serve the nucleation center to produce MnPNF in the presence of phosphate-buffered saline (PBS). The morphology and surface characterization results show that the MnPNF is assembled with hierarchical nanoplates to form 500 nm nanoflowers. The oxidase-like activity of MnPNF is based on the redox reaction with 3,3',5,5'-tetramethylbenzidine. However, the addition of GSH can reduce MnPNF to Mn2+, and subsequently supresses the oxidase-like activity and a yellow color at 450 nm is observed in the presence of H2SO4. The MnPNF-based nanozyme exhibits excellent sensing ability toward GSH detection, and a good linear relationship between the change in absorbance at 450 nm and the added amounts of GSH at 50 nM-10 µM with low limits of detection of 20 and 26.6 nM in the PBS and diluted human serum, respectively, is observed. Moreover, the sensing probe shows a superior selectivity over the other 16 interferences, which drive the determination of GSH feasible in real human serum. Since the MnPNF can be simply prepared at room temperature and no functionalization is required, this assay can be used to design the highly efficient biomimic oxidase for effective sensing of GSH and other disease-related biomolecules in biological fluid samples.


Assuntos
Colorimetria , Glutationa , Humanos , Compostos Organometálicos , Oxirredução , Oxirredutases
3.
Biosens Bioelectron ; 181: 113151, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33740543

RESUMO

Glioma is the predominant brain tumor with high death rate. The successful development of biosensor to achieve an efficient detection of glioma cells at low concentration remains a great challenge for the personalized glioma therapy. Herein, an ultrasensitive pulse induced electrochemically impedimetric biosensor for glioma cells detection has been successfully fabricated. The 4-11 nm sulfur-doped graphene quantum dots (S-GQDs) are homogeneously deposited onto gold nanoparticles decorated carbon nanospheres (Au-CNS) by Au-thiol linkage to form S-GQDs@Au-CNS nanocomposite which acts as dual functional probe for enhancing the electrochemical activity as well as conjugating the angiopep-2 (Ang-2) for glioma cell detection. Moreover, the application of an externally electrical pulse at +0.6 V expend the surface of glioma cells to accelerate the attachment of glioma cells onto the Ang-2-conjugated S-GQDs@Au-CNS nanocomposite, resulting in the enhanced sensitivity toward glioma cell detection. An ultrasensitive impedimetric detection of glioma cells with a wide linear range of 100-100,000 cells mL-1 and a limit of detection of 40 cells mL-1 is observed. Moreover, the superior selectivity with long-term stability of the developed biosensor in human serum matrix corroborates the feasibility of using S-GQDs@Au-CNS based nanomaterials as the promising sensing probe for practical application to facilitate the ultrasensitive and highly selective detection of cancer cells.


Assuntos
Técnicas Biossensoriais , Glioma , Grafite , Nanopartículas Metálicas , Nanosferas , Pontos Quânticos , Carbono , Técnicas Eletroquímicas , Glioma/diagnóstico , Ouro , Humanos , Limite de Detecção , Enxofre
4.
Nanomaterials (Basel) ; 10(9)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962289

RESUMO

Herein, the boron and nitrogen co-doped 0-dimensional graphene quantum dots (B,N-GQDs) with high quantum yield (QY) were synthesized via microwave-assisted hydrothermal method at 170 °C for 20 min using fresh passion fruit juice and boric acid as the starting materials. The 3-6 layers of B,N-GQDs with mean particle size of 9 ± 1 nm were then used for ultra-sensitive and selective detection of tetracycline in aqueous and biological media. The hybridization of boron and nitrogen atoms into the GQD structures increases the intensity of electronegative, resulting in the enhancement of QY to 50 ± 1%. The B,N-GQDs show their excellent analytical performance on tetracycline determination after 2 min of reaction under an optimal condition at pH 5. The linear range of 0.04-70 µM and with limits of detection (LOD) of 1 nM in phosphate buffer saline (PBS), 1.9 nM in urine and 2.2 nM in human serum are obtained. Moreover, the high selectivity of tetracycline by B,N-GQDs over the other 23 interferences is observed. The π-π interaction and electron donor-acceptor principle play pivotal roles in enhancing the ultra-sensitivity and selectivity of B,N-GQDs toward TC detection. Moreover, the B, N-GQD based paper nanosensor exhibits an excellent analytical performance on visual detection of 0.1-30 µM TC in human serum. Results of this study clearly indicate the feasibility of synthesis of B,N-GQDs derived from passion fruit juice for ultrasensitive tetracycline detection, which can open an avenue to use natural products for the preparation of environmentally benign and biocompatible carbon nanomaterials for highly sensitive detection of drugs, antibiotics, organic compounds and biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...