Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 24961-24975, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706267

RESUMO

Increasingly complex modern gas-monitoring scenarios necessitate advanced sensing capabilities to detect and identify a diverse range of gases under varying conditions. There is a rising demand for individual sensors with multiple responses capable of recognizing gases, identifying components in mixtures, and providing stable responses. Inspired by gas sensors employing multivariable response principles, we develop a nanoporous anodic alumina high-order microcavity (NAA-HOµCV) gas sensor with multiple optical outputs for discriminative gas detection. The NAA-HOµCV architecture, formed by a Fabry-Pérot microcavity with distributed Bragg reflector (DBR) mirrors and an extended-length microcavity layer supporting multiple resonant modes, serves as an effective solid-state fingerprint platform for distinguishing volatile organic compound (VOC) gases. Our research reveals that the coupling strength of light into resonant modes and their evolution depend on the thickness of the DBR mirrors and the dimension of the microcavity layer, which allows us to optimize the discriminative sensing capability of the NAA-HOµCV sensor through structural engineering of the microcavity and photonic crystal mirrors. Gas-sensing experiments conducted on the NAA-HOµCV sensor demonstrate real-time discrimination between physiosorbed VOC gases (isopropanol, ethanol, or acetone) in reversible gas sensing. It also achieves superior ppb-level sensing in irreversible gas sensing of model silane molecules. Our study presents promising avenues for designing compact, cost-effective, and highly efficient gas sensors with tailored properties for discriminative gas detection.

2.
ACS Appl Mater Interfaces ; 16(9): 11787-11799, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394678

RESUMO

The fields of plasmonics and photonic crystals (PCs) have been combined to generate model light-confining Tamm plasmon (TMM) cavities. This approach effectively overcomes the intrinsic limit of diffraction faced by dielectric cavities and mitigates losses associated with the inherent properties of plasmonic materials. In this study, nanoporous anodic alumina PCs, produced by two-step sinusoidal pulse anodization, are used as a model dielectric platform to establish the methodology for tailoring light confinement through TMM resonances. These model dielectric mirrors feature highly organized nanopores and narrow bandwidth photonic stopbands (PSBs) across different positions of the spectrum. Different types of metallic films (gold, silver, and aluminum) were coated on the top of these model dielectric mirrors. By structuring the features of the plasmonic and photonic components of these hybrid structures, the characteristics of TMM resonances were studied to elucidate effective approaches to optimize the light-confining capability of this hybrid TMM model system. Our findings indicate that the coupling of photonic and plasmonic modes is maximized when the PSB of the model dielectric mirror is broad and located within the midvisible region. It was also found that thicker metal films enhance the quality of the confined light. Gas sensing experiments were performed on optimized TMM systems, and their sensitivity was assessed in real time to demonstrate their applicability. Ag films provide superior performance in achieving the highest sensitivity (S = 0.038 ± 0.001 nm ppm-1) based on specific binding interactions between thiol-containing molecules and metal films.

3.
ACS Appl Mater Interfaces ; 14(18): 21181-21197, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35485719

RESUMO

The hemispherical barrier oxide layer (BOL) closing the bottom tips of hexagonally distributed arrays of cylindrical nanochannels in nanoporous anodic alumina (NAA) membranes is structurally engineered by anodizing aluminum substrates in three distinct acid electrolytes at their corresponding self-ordering anodizing potentials. These nanochannels display a characteristic ionic current rectification (ICR) signal between high and low ionic conduction states, which is determined by the thickness and chemical composition of the BOL and the pH of the ionic electrolyte solution. The rectification efficiency of the ionic current associated with the flow of ions across the anodic BOL increases with its thickness, under optimal pH conditions. The inner surface of the nanopores in NAA membranes was chemically modified with thiol-terminated functional molecules. The resultant NAA-based iontronic system provides a model platform to selectively detect gold metal ions (Au3+) by harnessing dynamic ICR signal shifts as the core sensing principle. The sensitivity of the system is proportional to the thickness of the barrier oxide layer, where NAA membranes produced in phosphoric acid at 195 V with a BOL thickness of 232 ± 6 nm achieve the highest sensitivity and low limit of detection in the sub-picomolar range. This study provides exciting opportunities to engineer NAA structures with tailorable ICR signals for specific applications across iontronic sensing and other nanofluidic disciplines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...