Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Math Biol ; 84(6): 41, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35467160

RESUMO

We analyze the harvesting and stocking of a population that is affected by random and seasonal environmental fluctuations. The main novelty comes from having three layers of environmental fluctuations. The first layer is due to the environment switching at random times between different environmental states. This is similar to having sudden environmental changes or catastrophes. The second layer is due to seasonal variation, where there is a significant change in the dynamics between seasons. Finally, the third layer is due to the constant presence of environmental stochasticity-between the seasonal or random regime switches, the species is affected by fluctuations which can be modelled by white noise. This framework is more realistic because it can capture both significant random and deterministic environmental shifts as well as small and frequent fluctuations in abiotic factors. Our framework also allows for the price or cost of harvesting to change deterministically and stochastically, something that is more realistic from an economic point of view. The combined effects of seasonal and random fluctuations make it impossible to find the optimal harvesting-stocking strategy analytically. We get around this roadblock by developing rigorous numerical approximations and proving that they converge to the optimal harvesting-stocking strategy. We apply our methods to multiple population models and explore how prices, or costs, and environmental fluctuations influence the optimal harvesting-stocking strategy. We show that in many situations the optimal way of harvesting and stocking is not of threshold type.


Assuntos
Modelos Biológicos , Dinâmica Populacional , Estações do Ano , Processos Estocásticos
2.
J Math Biol ; 81(1): 65-112, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32415374

RESUMO

We study an ecosystem of interacting species that are influenced by random environmental fluctuations. At any point in time, we can either harvest or seed (repopulate) species. Harvesting brings an economic gain while seeding incurs a cost. The problem is to find the optimal harvesting-seeding strategy that maximizes the expected total income from harvesting minus the cost one has to pay for the seeding of various species. In Hening et al. (J Math Biol 79(2):533-570, 2019b) we considered this problem when one has absolute control of the population (infinite harvesting and seeding rates are possible). In many cases, these approximations do not make biological sense and one must consider what happens when one, or both, of the seeding and harvesting rates are bounded. The focus of this paper is the analysis of these three novel settings: bounded seeding and infinite harvesting, bounded seeding and bounded harvesting, and infinite seeding and bounded harvesting. Even one dimensional harvesting problems can be hard to tackle. Once one looks at an ecosystem with more than one species analytical results usually become intractable. In order to gain information regarding the qualitative behavior of the system we develop rigorous numerical approximation methods. This is done by approximating the continuous time dynamics by Markov chains and then showing that the approximations converge to the correct optimal strategy as the mesh size goes to zero. By implementing these numerical approximations, we are able to gain qualitative information about how to best harvest and seed species in specific key examples. We are able to show through numerical experiments that in the single species setting the optimal seeding-harvesting strategy is always of threshold type. This means there are thresholds [Formula: see text] such that: (1) if the population size is 'low', so that it lies in [Formula: see text], there is seeding using the maximal seeding rate; (2) if the population size 'moderate', so that it lies in [Formula: see text], there is no harvesting or seeding; (3) if the population size is 'high', so that it lies in the interval [Formula: see text], there is harvesting using the maximal harvesting rate. Once we have a system with at least two species, numerical experiments show that constant threshold strategies are not optimal anymore. Suppose there are two competing species and we are only allowed to harvest or seed species 1. The optimal strategy of seeding and harvesting will involve lower and upper thresholds [Formula: see text] which depend on the density [Formula: see text] of species 2.


Assuntos
Ecossistema , Modelos Biológicos , Meio Ambiente , Cadeias de Markov , Densidade Demográfica , Dinâmica Populacional
3.
J Math Biol ; 79(2): 533-570, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31030297

RESUMO

We analyze the optimal harvesting problem for an ecosystem of species that experience environmental stochasticity. Our work generalizes the current literature significantly by taking into account non-linear interactions between species, state-dependent prices, and species seeding. The key generalization is making it possible to not only harvest, but also 'seed' individuals into the ecosystem. This is motivated by how fisheries and certain endangered species are controlled. The harvesting problem becomes finding the optimal harvesting-seeding strategy that maximizes the expected total income from the harvest minus the lost income from the species seeding. Our analysis shows that new phenomena emerge due to the possibility of species seeding. It is well-known that multidimensional harvesting problems are very hard to tackle. We are able to make progress, by characterizing the value function as a viscosity solution of the associated Hamilton-Jacobi-Bellman equations. Moreover, we provide a verification theorem, which tells us that if a function has certain properties, then it will be the value function. This allows us to show heuristically, as was shown by Lungu and Øksendal (Bernoulli 7(3):527-539, 2001), that it is almost surely never optimal to harvest or seed from more than one population at a time. It is usually impossible to find closed-form solutions for the optimal harvesting-seeding strategy. In order to by-pass this obstacle we approximate the continuous-time systems by Markov chains. We show that the optimal harvesting-seeding strategies of the Markov chain approximations converge to the correct optimal harvesting strategy. This is used to provide numerical approximations to the optimal harvesting-seeding strategies and is a first step towards a full understanding of the intricacies of how one should harvest and seed interacting species. In particular, we look at three examples: one species modeled by a Verhulst-Pearl diffusion, two competing species and a two-species predator-prey system.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Biológicos , Modelos Econômicos , Agricultura/economia , Animais , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Humanos , Cadeias de Markov , Dispersão Vegetal , Plantas , Densidade Demográfica , Dinâmica Populacional , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...