Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 735, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335590

RESUMO

Results from live cell imaging of fluorescently tagged Cellulose Synthase (CESA) proteins in Cellulose Synthesis Complexes (CSCs) have enhanced our understanding of cellulose biosynthesis, including the mechanisms of action of cellulose synthesis inhibitors. However, this method has been applied only in Arabidopsis thaliana and Brachypodium distachyon thus far. Results from freeze fracture electron microscopy of protonemal filaments of the moss Funaria hygrometrica indicate that a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), fragments CSCs and clears them from the plasma membrane. This differs from Arabidopsis, in which DCB causes CSC accumulation in the plasma membrane and a different cellulose synthesis inhibitor, isoxaben, clears CSCs from the plasma membrane. In this study, live cell imaging of the moss Physcomitrella patens indicated that DCB and isoxaben have little effect on protonemal growth rates, and that only DCB causes tip rupture. Live cell imaging of mEGFP-PpCESA5 and mEGFP-PpCESA8 showed that DCB and isoxaben substantially reduced CSC movement, but had no measureable effect on CSC density in the plasma membrane. These results suggest that DCB and isoxaben have similar effects on CSC movement in P. patens and Arabidopsis, but have different effects on CSC intracellular trafficking, cell growth and cell integrity in these divergent plant lineages.


Assuntos
Bryopsida/enzimologia , Bryopsida/metabolismo , Membrana Celular/enzimologia , Celulose/biossíntese , Inibidores Enzimáticos/metabolismo , Glucosiltransferases/antagonistas & inibidores , Nitrilas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Bryopsida/efeitos dos fármacos , Bryopsida/crescimento & desenvolvimento , Microscopia Intravital , Transporte Proteico/efeitos dos fármacos
2.
Plant Physiol ; 175(1): 210-222, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28768816

RESUMO

The secondary cell walls of tracheary elements and fibers are rich in cellulose microfibrils that are helically oriented and laterally aggregated. Support cells within the leaf midribs of mosses deposit cellulose-rich secondary cell walls, but their biosynthesis and microfibril organization have not been examined. Although the Cellulose Synthase (CESA) gene families of mosses and seed plants diversified independently, CESA knockout analysis in the moss Physcomitrella patens revealed parallels with Arabidopsis (Arabidopsis thaliana) in CESA functional specialization, with roles for both subfunctionalization and neofunctionalization. The similarities include regulatory uncoupling of the CESAs that synthesize primary and secondary cell walls, a requirement for two or more functionally distinct CESA isoforms for secondary cell wall synthesis, interchangeability of some primary and secondary CESAs, and some CESA redundancy. The cellulose-deficient midribs of ppcesa3/8 knockouts provided negative controls for the structural characterization of stereid secondary cell walls in wild type P. patens Sum frequency generation spectra collected from midribs were consistent with cellulose microfibril aggregation, and polarization microscopy revealed helical microfibril orientation only in wild type leaves. Thus, stereid secondary walls are structurally distinct from primary cell walls, and they share structural characteristics with the secondary walls of tracheary elements and fibers. We propose a mechanism for the convergent evolution of secondary walls in which the deposition of aggregated and helically oriented microfibrils is coupled to rapid and highly localized cellulose synthesis enabled by regulatory uncoupling from primary wall synthesis.


Assuntos
Bryopsida/enzimologia , Parede Celular/metabolismo , Glucosiltransferases/metabolismo , Família Multigênica , Células Vegetais/metabolismo , Bryopsida/genética , Glucosiltransferases/genética , Isoenzimas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 7: 248, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014284

RESUMO

In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.

4.
Shock ; 40(2): 122-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23807244

RESUMO

Invariant natural killer T cells (iNKT) cells are emerging as key mediators of innate immune cellular and inflammatory responses to sepsis and peritonitis. Invariant natural killer T cells mediate survival following murine septic shock. Macrophages are pivotal to survival following sepsis. Invariant natural killer T cells have been shown to modulate various mediators of the innate immune system, including macrophages. We demonstrate sepsis-inducing iNKT-cell exodus from the liver appearing in the peritoneal cavity, the source of the sepsis. This migration was affected by programmed death receptor 1. Programmed death receptor 1 is an inhibitory immune receptor, reported as ubiquitously expressed at low levels on iNKT cells. Programmed death receptor 1 has been associated with markers of human critical illness. Programmed death receptor 1-deficient iNKT cells failed to demonstrate similar migration. To the extent that iNKT cells affected peritoneal macrophage function, we assessed peritoneal macrophages' ability to phagocytose bacteria. Invariant natural killer T(-/-) mice displayed dysfunctional macrophage phagocytosis and altered peritoneal bacterial load. This dysfunction was reversed when peritoneal macrophages from iNKT(-/-) mice were cocultured with wild-type iNKT cells. Together, our results indicate that sepsis induces liver iNKT-cell exodus into the peritoneal cavity mediated by programmed death receptor 1, and these peritoneal iNKT cells appear critical to regulation of peritoneal macrophage phagocytic function. Invariant natural killer T cells offer therapeutic targets for modulating immune responses and detrimental effects of sepsis.


Assuntos
Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Células T Matadoras Naturais/citologia , Sepse/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Fagocitose/fisiologia
5.
Shock ; 38(2): 117-22, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22683728

RESUMO

Programmed death 1 (PD-1) is an inhibitor protein receptor for the immune system and has been shown to be upregulated in animal models of critical illness as well as after trauma and in burn victims in humans. It is believed that PD-1 may play a role in the immune dysfunction seen in surgical critical illness. However, although prior studies have associated changes in PD-1 expression with altered immune cell function, it is not known if a correlation with clinical status exists. We therefore aimed to describe a potential role for PD-1 in the immune dysfunction seen in critically ill trauma and surgical patients. This is an observational cohort study. Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were calculated on critically ill and injured trauma and surgical intensive care unit patients from a tertiary care/level I trauma center. Blood was drawn within 24 h of establishment of diagnosis and admission to the intensive care unit to measure circulating cytokine levels, as well as PD-1 expression on circulating cells. Main outcome measures included PD-1 expression on leukocytes and the relationship to physiological dysfunction (APACHE II) as well as the correlation of PD-1 expression and interleukin 10 levels among patients with severe physiological dysfunction. Samples were collected from 90 critically ill surgical patients. Among patients with severe physiological dysfunction (APACHE II >20), there were increased numbers of granulocytes (median, 144 vs. 90 cells/µL; P = 0.037) and monocytes (median, 12 vs. 6 cells/µL; P = 0.022) with PD-1 expression. In addition, among patients with an APACHE II score of greater than 20, there was a larger percentage of CD3 cells (44% vs. 29%; P = 0.015) expressing PD-1. When only patients with an APACHE II score greater than 20 were assessed, PD-1 expression on monocytes correlated positively with interleukin levels in the serum (r = 0.525, P = 0.05). Variability in the expression of PD-1 on leukocytes in critical surgical illness correlates with physiological dysfunction and suggests that PD-1 may be a valuable tool in the assessment of immune dysfunction following trauma or severe surgical insult.


Assuntos
Estado Terminal , Doenças do Sistema Imunitário/diagnóstico , Complicações Pós-Operatórias/diagnóstico , Receptor de Morte Celular Programada 1/metabolismo , Ferimentos e Lesões/imunologia , APACHE , Adulto , Idoso , Biomarcadores/metabolismo , Cuidados Críticos , Citocinas/metabolismo , Feminino , Humanos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/imunologia , Choque Séptico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA