Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37189465

RESUMO

Shortly after its emergence, Omicron and its sub-variants have quickly replaced the Delta variant during the current COVID-19 outbreaks in Vietnam and around the world. To enable the rapid and timely detection of existing and future variants for epidemiological surveillance and diagnostic applications, a robust, economical real-time PCR method that can specifically and sensitively detect and identify multiple different circulating variants is needed. The principle of target- failure (TF) real-time PCR is simple. If a target contains a deletion mutation, then there is a mismatch with the primer or probe, and the real-time PCR will fail to amplify the target. In this study, we designed and evaluated a novel multiplex RT real-time PCR (MPL RT-rPCR) based on the principle of target failure to detect and identify different variants of SARS-CoV-2 directly from the nasopharyngeal swabs collected from COVID-19 suspected cases. The primers and probes were designed based on the specific deletion mutations of current circulating variants. To evaluate the results from the MPL RT-rPCR, this study also designed nine pairs of primers for amplifying and sequencing of nine fragments from the S gene containing mutations of known variants. We demonstrated that (i) our MPL RT-rPCR was able to accurately detect multiple variants that existed in a single sample; (ii) the limit of detection of the MPL RT-rPCR in the detection of the variants ranged from 1 to 10 copies for Omicron BA.2 and BA.5, and from 10 to 100 copies for Delta, Omicron BA.1, recombination of BA.1 and BA.2, and BA.4; (iii) between January and September 2022, Omicron BA.1 emerged and co-existed with the Delta variant during the early period, both of which were rapidly replaced by Omicron BA.2, and this was followed by Omicron BA.5 as the dominant variant toward the later period. Our results showed that SARS-CoV-2 variants rapidly evolved within a short period of time, proving the importance of a robust, economical, and easy-to-access method not just for epidemiological surveillance but also for diagnoses around the world where SARS-CoV-2 variants remain the WHO's highest health concern. Our highly sensitive and specific MPL RT-rPCR is considered suitable for further implementation in many laboratories, especially in developing countries.

2.
Front Cardiovasc Med ; 9: 850538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35274014

RESUMO

A progressive defect in the energy generation pathway is implicated in multiple aging-related diseases, including cardiovascular conditions and Alzheimer's Disease (AD). However, evidence of the pathogenesis of cardiac dysfunction in AD and the associations between the two organ diseases need further elucidation. This study aims to characterize cellular defects resulting in decreased cardiac function in AD-model. 5XFAD mice, a strain expressing five mutations in human APP and PS1 that shows robust Aß production with visible plaques at 2 months and were used in this study as a model of AD. 5XFAD mice and wild-type (WT) counterparts were subjected to echocardiography at 2-, 4-, and 6-month, and 5XFAD had a significant reduction in cardiac fractional shortening and ejection fraction compared to WT. Additionally, 5XFAD mice had decreased observed electrical signals demonstrated as decreased R, P, T wave amplitudes. In isolated cardiomyocytes, 5XFAD mice showed decreased fraction shortening, rate of shortening, as well as the degree of transient calcium influx. To reveal the mechanism by which AD leads to cardiac systolic dysfunction, the immunoblotting analysis showed increased activation of AMP-activated protein kinase (AMPK) in 5XFAD left ventricular and brain tissue, indicating altered energy metabolism. Mito Stress Assays examining mitochondrial function revealed decreased basal and maximal oxygen consumption rate, as well as defective pyruvate dehydrogenase activity in the 5XFAD heart and brain. Cellular inflammation was provoked in the 5XFAD heart and brain marked by the increase of reactive oxygen species accumulation and upregulation of inflammatory mediator activities. Finally, AD pathological phenotype with increased deposition of Aß and defective cognitive function was observed in 6-month 5XFAD mice. In addition, elevated fibrosis was observed in the 6-month 5XFAD heart. The results implicated that AD led to defective mitochondrial function, and increased inflammation which caused the decrease in contractility of the heart.

3.
PLoS One ; 6(7): e21116, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21765891

RESUMO

Enterovirus 71 (EV71)-associated hand, foot and mouth disease has emerged as a serious public health problem in South East Asia over the last decade. To better understand the prevalence of EV71 infection, we determined EV71 seroprevalence and seroincidence amongst healthy infants and children in Ho Chi Minh City, Viet Nam. In a cohort of 200 newborns, 55% of cord blood samples contained EV71 neutralizing antibodies and these decayed to undetectable levels by 6 months of age in 98% of infants. The EV71 neutralizing antibody seroconversion rate was 5.6% in the first year and 14% in the second year of life. In children 5-15 yrs of age, seroprevalence of EV71 neutralizing antibodies was 84% and in cord blood it was 55%. Taken together, these data suggest EV71 force of infection is high and highlights the need for more research into its epidemiology and pathogenesis in high disease burden countries.


Assuntos
Enterovirus Humano A/fisiologia , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Adolescente , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Criança , Estudos Transversais , Enterovirus Humano A/imunologia , Infecções por Enterovirus/sangue , Sangue Fetal/imunologia , Sangue Fetal/virologia , Doença de Mão, Pé e Boca/tratamento farmacológico , Doença de Mão, Pé e Boca/virologia , Humanos , Imunoglobulinas Intravenosas/administração & dosagem , Imunoglobulinas Intravenosas/uso terapêutico , Incidência , Lactente , Estudos Soroepidemiológicos , Vietnã/epidemiologia , Adulto Jovem
4.
PLoS Biol ; 8(7): e1000436, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20668664

RESUMO

The Australasian and South American marsupial mammals, such as kangaroos and opossums, are the closest living relatives to placental mammals, having shared a common ancestor around 130 million years ago. The evolutionary relationships among the seven marsupial orders have, however, so far eluded resolution. In particular, the relationships between the four Australasian and three South American marsupial orders have been intensively debated since the South American order Microbiotheria was taxonomically moved into the group Australidelphia. Australidelphia is significantly supported by both molecular and morphological data and comprises the four Australasian marsupial orders and the South American order Microbiotheria, indicating a complex, ancient, biogeographic history of marsupials. However, the exact phylogenetic position of Microbiotheria within Australidelphia has yet to be resolved using either sequence or morphological data analysis. Here, we provide evidence from newly established and virtually homoplasy-free retroposon insertion markers for the basal relationships among marsupial orders. Fifty-three phylogenetically informative markers were retrieved after in silico and experimental screening of approximately 217,000 retroposon-containing loci from opossum and kangaroo. The four Australasian orders share a single origin with Microbiotheria as their closest sister group, supporting a clear divergence between South American and Australasian marsupials. In addition, the new data place the South American opossums (Didelphimorphia) as the first branch of the marsupial tree. The exhaustive computational and experimental evidence provides important insight into the evolution of retroposable elements in the marsupial genome. Placing the retroposon insertion pattern in a paleobiogeographic context indicates a single marsupial migration from South America to Australia. The now firmly established phylogeny can be used to determine the direction of genomic changes and morphological transitions within marsupials.


Assuntos
Evolução Biológica , Genoma/genética , Macropodidae/genética , Mutagênese Insercional/genética , Gambás/genética , Filogenia , Retroelementos/genética , Animais , Marcadores Genéticos , Elementos Nucleotídeos Curtos e Dispersos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...