Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38287927

RESUMO

Cellular processes rely on proteins with temperature-dependent stability and activity. While thermosensitivity in biological networks is well-explored, the effect of temperature on complex mechanochemical assemblies, like the spindle, is rarely studied. We examined fission yeast spindle dynamics and chromosome segregation from 15°C to 40°C. Our findings reveal that these parameters follow U-shaped temperature-dependent curves but reach their minima at different temperatures. Specifically, spindle dynamics peak around 35°C, whereas chromosome segregation defects are minimized at 25°C. This suggests a scenario in which mitotic errors are tolerated to expedite rapid cell cycle progression.

2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37521138

RESUMO

Mitosis is usually shorter than other phases of the cell cycle and maintains a consistent duration despite variations in cell size and spindle size. This suggests the existence of a compensatory mechanism that ensures a short duration, possibly as a protective measure against irreversible damage, such as DNA damage. To explore the link between prolonged mitosis and DNA damage, we develop a microscopy-based assay utilizing Rad52-GFP as a marker for mitotic DNA damage. Through this assay, we provide evidence that mutants with prolonged mitosis exhibit increased Rad52 puncta, indicating an elevation in endogenous DNA damage.

3.
iScience ; 26(5): 106665, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37182105

RESUMO

Cell centers their division apparatus to ensure symmetric cell division, a challenging task when the governing dynamics is stochastic. Using fission yeast, we show that the patterning of nonequilibrium polymerization forces of microtubule (MT) bundles controls the precise localization of spindle pole body (SPB), and hence the division septum, at the onset of mitosis. We define two cellular objectives, reliability, the mean SPB position relative to the geometric center, and robustness, the variance of the SPB position, which are sensitive to genetic perturbations that change cell length, MT bundle number/orientation, and MT dynamics. We show that simultaneous control of reliability and robustness is required to minimize septum positioning error achieved by the wild type (WT). A stochastic model for the MT-based nucleus centering, with parameters measured directly or estimated using Bayesian inference, recapitulates the maximum fidelity of WT. Using this, we perform a sensitivity analysis of the parameters that control nuclear centering.

4.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36082020

RESUMO

We previously showed that the silkworm holocentric spindles are square-shaped, compared to the canonical oval shape of human monocentric spindles (Vanpoperinghe et al. 2021). Further, while kinesin-5 depletion resulted in monopolar spindles in both cells, kinesin-14 depletion affected only the silkworm cells, resulting in mal-shaped spindles (Vanpoperinghe et al. 2021). We now extend our study to quantify the effect of kinesin-5 and kinesin-14 on spindle assembly dynamics and chromosome segregation in holocentric silkworm BmN4 cells. We find that mal-shaped spindle and prolonged mitosis duration are highly correlated with chromosome segregation error, leading to aneuploidy and cell death in BmN4 cells. Further, double RNAi-mediated depletion of kinesin-5 and kinesin-14 partially rescue the monopolar spindle and mal-shaped spindle phenotypes in kinesin-5 and kinesin 14-depleted cells, respectively.

5.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36004005

RESUMO

Human retinal pigment epithelium RPE-1 cells are immortalized diploid wild-type cells. RPE-1 is increasingly used for studies of spindle assembly dynamics and chromosome segregation. Here, we imaged living RPE-1 cells using the spinning disk confocal microscope and report their complete spindle assembly dynamic parameters. Live-cell experiments enabled ascribing precise timing of function of the kinesin-5 Eg5 and kinesin-14 HSET throughout different phases of mitosis. Eg5 functions at prophase and metaphase, to assemble and maintain spindle bipolarity, respectively. Eg5 inhibition results in spindle collapse during prophase and metaphase, resulting in monoastral/monopolar spindles. HSET functions throughout mitosis to maintain spindle length. HSET degradation results in shorter spindles through all phases of mitosis. Double-inhibition of Eg5 and HSET produces only monoastral/monopolar spindles, indicating that Eg5 and HSET may not be antagonistic in wild-type RPE-1 cells, contrary to previous studies using cancer cells. In the context of spindle assembly, our results highlight potential important differences between RPE-1 and other cancer-derived cell lines.

6.
Elife ; 112022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35293864

RESUMO

During anaphase B, molecular motors slide interpolar microtubules to elongate the mitotic spindle, contributing to the separation of chromosomes. However, sliding of antiparallel microtubules reduces their overlap, which may lead to spindle breakage, unless microtubules grow to compensate sliding. How sliding and growth are coordinated is still poorly understood. In this study, we have used the fission yeast S. pombe to measure microtubule dynamics during anaphase B. We report that the coordination of microtubule growth and sliding relies on promoting rescues at the midzone edges. This makes microtubules stable from pole to midzone, while their distal parts including the plus ends alternate between assembly and disassembly. Consequently, the midzone keeps a constant length throughout anaphase, enabling sustained sliding without the need for a precise regulation of microtubule growth speed. Additionally, we found that in S. pombe, which undergoes closed mitosis, microtubule growth speed decreases when the nuclear membrane wraps around the spindle midzone.


Assuntos
Anáfase , Schizosaccharomyces , Microtúbulos , Mitose , Schizosaccharomyces/genética , Fuso Acromático/fisiologia
7.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34514356

RESUMO

Proper chromosome segregation during mitosis requires both the assembly of a microtubule (MT)-based spindle and the assembly of DNA-centromere-based kinetochore structure. Kinetochore-to-MT attachment enables chromosome separation. Monocentric cells, such as found in human, have one unique kinetochore per chromosome. Holocentric cells, such as found in the silkworm, in contrast, have multiple kinetochore structures per chromosome. Interestingly, some human cancer chromosomes contain more than one kinetochore, a condition called di- and tricentric. Thus, comparing how wild-type mono- and holocentric cells perform mitosis may provide novel insights into cancer di- and tricentric cell mitosis. We present here live-cell imaging of human RPE1 and silkworm BmN4 cells, revealing striking differences in spindle architecture and dynamics, and highlighting differential kinesin function between mono- and holocentric cells.

8.
Elife ; 102021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34080538

RESUMO

Mitotic spindle function depends on the precise regulation of microtubule dynamics and microtubule sliding. Throughout mitosis, both processes have to be orchestrated to establish and maintain spindle stability. We show that during anaphase B spindle elongation in Schizosaccharomyces pombe, the sliding motor Klp9 (kinesin-6) also promotes microtubule growth in vivo. In vitro, Klp9 can enhance and dampen microtubule growth, depending on the tubulin concentration. This indicates that the motor is able to promote and block tubulin subunit incorporation into the microtubule lattice in order to set a well-defined microtubule growth velocity. Moreover, Klp9 recruitment to spindle microtubules is dependent on its dephosphorylation mediated by XMAP215/Dis1, a microtubule polymerase, creating a link between the regulation of spindle length and spindle elongation velocity. Collectively, we unravel the mechanism of anaphase B, from Klp9 recruitment to the motors dual-function in regulating microtubule sliding and microtubule growth, allowing an inherent coordination of both processes.


Assuntos
Cinesinas/metabolismo , Meiose , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fuso Acromático/metabolismo , Regulação Fúngica da Expressão Gênica , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Proteínas Motores Moleculares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais , Fuso Acromático/genética , Fatores de Tempo
9.
Essays Biochem ; 64(2): 383-396, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32501481

RESUMO

The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


Assuntos
Fuso Acromático , Animais , Tamanho Celular , Células Eucarióticas/citologia , Evolução Molecular , Humanos , Microtúbulos/metabolismo , Mitose , Saccharomyces cerevisiae
10.
J Cell Sci ; 133(11)2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32327557

RESUMO

To segregate the chromosomes faithfully during cell division, cells assemble a spindle that captures the kinetochores and pulls them towards opposite poles. Proper spindle function requires correct interplay between microtubule motors and non-motor proteins. Defects in spindle assembly or changes in spindle dynamics are associated with diseases, such as cancer or developmental disorders. Here, we compared mitotic and meiotic spindles in fission yeast. We show that, even though mitotic and meiotic spindles underwent the typical three phases of spindle elongation, they have distinct features. We found that the relative concentration of the kinesin-14 family protein Pkl1 is decreased in meiosis I compared to mitosis, while the concentration of the kinesin-5 family protein Cut7 remains constant. We identified the second kinesin-14 family protein Klp2 and microtubule dynamics as factors necessary for proper meiotic spindle assembly. This work defines the differences between mitotic and meiotic spindles in fission yeast Schizosaccharomyces pombe, and provides prospect for future comparative studies.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Mitose , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático
11.
Biomolecules ; 9(3)2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836700

RESUMO

The fission yeast Schizosaccharomycespombe serves as a good genetic model organism for the molecular dissection of the microtubule (MT) cytoskeleton. However, analysis of the number and distribution of individual MTs throughout the cell cycle, particularly during mitosis, in living cells is still lacking, making quantitative modelling imprecise. We use quantitative fluorescent imaging and analysis to measure the changes in tubulin concentration and MT number and distribution throughout the cell cycle at a single MT resolution in living cells. In the wild-type cell, both mother and daughter spindle pole body (SPB) nucleate a maximum of 23 ± 6 MTs at the onset of mitosis, which decreases to a minimum of 4 ± 1 MTs at spindle break down. Interphase MT bundles, astral MT bundles, and the post anaphase array (PAA) microtubules are composed primarily of 1 ± 1 individual MT along their lengths. We measure the cellular concentration of αß-tubulin subunits to be ~5 µM throughout the cell cycle, of which one-third is in polymer form during interphase and one-quarter is in polymer form during mitosis. This analysis provides a definitive characterization of αß-tubulin concentration and MT number and distribution in fission yeast and establishes a foundation for future quantitative comparison of mutants defective in MTs.


Assuntos
Ciclo Celular , Microtúbulos/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Tubulina (Proteína)/análise , Tubulina (Proteína)/metabolismo , Microtúbulos/química
12.
Structure ; 25(6): 821-822, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591623

RESUMO

Microtubule (MT) dynamics are regulated by a plethora of microtubule-associated proteins (MAPs). An important MT regulator is the end binding protein EB, which serves as a scaffold to recruit other MAPs to MT plus ends. In this issue of Structure, Kumar et al. (2017) describe LxxPTPh, a new linear sequence motif that can bind EBs. The finding opens up the possibility of discovering new MT regulators.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas de Transporte , Ligação Proteica
13.
Nat Commun ; 8: 15286, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513584

RESUMO

Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors.


Assuntos
Segregação de Cromossomos/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Mitose/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Simulação por Computador , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Modelos Biológicos , Método de Monte Carlo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/metabolismo
14.
Biol Open ; 6(6): 844-849, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28455357

RESUMO

Post-translational protein modification such as phosphorylation and ubiquitination are critical during mitosis to ensure proper timing and progression of chromosome segregation. It has been recently recognized that another type of protein modification - neddylation - may also regulate mitosis and chromosome segregation. The conserved protein DCN1 (defective cullin neddylation 1) has been shown, when knocked-down by RNAi, to result in multinucleated cells and/or blockage of cell proliferation. However, how DCN1 functions in mitosis and chromosome segregation is not known. We report here the fission yeast dcn1+ and its role in mitosis and chromosome segregation. Dcn1-GFP localizes to the nucleus throughout the cell cycle. dcn1-deletion (dcn1Δ) leads to chromosome and kinetochore lagging at anaphase, resulting from delayed and attenuated cohesin cleavage and sister chromatids separation. These results put Dcn1 upstream of the anaphase promoting complex/cyclosome (APC/C) pathway. We propose a mechanism for Dcn1 function at mitosis.

15.
Curr Biol ; 27(4): 534-542, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28162898

RESUMO

Proper division plane positioning is crucial for faithful chromosome segregation but also influences cell size, position, or fate [1]. In fission yeast, medial division is controlled through negative signaling by the cell tips during interphase and positive signaling by the centrally placed nucleus at mitotic entry [2-4]: the cell geometry network (CGN), controlled by the inhibitory cortical gradient of the DYRK kinase Pom1 emanating from the cell tips, first promotes the medial localization of cytokinetic ring precursors organized by the SAD kinase Cdr2 to pre-define the division plane [5-8]; then, massive nuclear export of the anillin-like protein Mid1 at mitosis entry confirms or readjusts the division plane according to nuclear position and triggers the assembly of a medial contractile ring [5, 9-11]. Strikingly, the Hippo-like septation initiation network (SIN) induces Cdr2 dissociation from cytokinetic precursors at this stage [12-14]. We show here that SIN-dependent phosphorylation of Cdr2 promotes its interaction with the 14-3-3 protein Rad24 that sequesters it in the cytoplasm during cell division. If this interaction is compromised, cytokinetic precursors are asymmetrically distributed in the cortex of newborn cells, leading to asymmetrical division if nuclear signaling is abolished. We conclude that, through this new function, the SIN resets the division plane in newborn cells to ensure medial division.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Citocinese , Citoplasma/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/fisiologia , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais
16.
Methods Cell Biol ; 129: 383-392, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26175449

RESUMO

Like centrosomes, yeast spindle pole bodies (SPBs) undergo a tightly controlled duplication cycle in order to restrict their number to one or two per cell and promote the assembly of a bipolar spindle at mitotic entry. This conservative duplication cycle is tightly coordinated with cell cycle progression although the mechanisms that ensure this coordination remain largely unknown. In this chapter, we describe simple high resolution microscopy- and quantitative light microscopy-based methods that allow to monitor SPB biogenesis in fission yeast and may be useful to study the molecular pathways controlling the successive phases of the duplication cycle.


Assuntos
Schizosaccharomyces/fisiologia , Corpos Polares do Fuso/fisiologia , Microscopia de Fluorescência , Análise de Célula Única
17.
Nat Commun ; 6: 7322, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26031557

RESUMO

Aneuploidy-chromosome instability leading to incorrect chromosome number in dividing cells-can arise from defects in centrosome duplication, bipolar spindle formation, kinetochore-microtubule attachment, chromatid cohesion, mitotic checkpoint monitoring or cytokinesis. As most tumours show some degree of aneuploidy, mechanistic understanding of these pathways has been an intense area of research, to provide potential therapeutics. Here we present a mechanism for aneuploidy in fission yeast based on spindle pole microtubule defocusing by loss of kinesin-14 Pkl1, leading to kinesin-5 Cut7-dependent aberrant long spindle microtubule minus-end protrusions that push the properly segregated chromosomes to the site of cell division, resulting in chromosome cut at cytokinesis. Pkl1 localization and function at the spindle pole is mutually dependent on spindle pole-associated protein Msd1. This mechanism of aneuploidy bypasses the known spindle assembly checkpoint that monitors chromosome segregation.


Assuntos
Aneuploidia , Instabilidade Cromossômica , Cromossomos/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Polos do Fuso/metabolismo , Segregação de Cromossomos , Schizosaccharomyces , Fuso Acromático
18.
J Cell Biol ; 209(1): 47-58, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25869666

RESUMO

Microtubules (MTs) and associated motors play a central role in nuclear migration, which is crucial for diverse biological functions including cell division, polarity, and sexual reproduction. In this paper, we report a dual mechanism underlying nuclear congression during fission yeast karyogamy upon mating of haploid cells. Using microfluidic chambers for long-term imaging, we captured the precise timing of nuclear congression and identified two minus end-directed motors operating in parallel in this process. Kinesin-14 Klp2 associated with MTs may cross-link and slide antiparallel MTs emanating from the two nuclei, whereas dynein accumulating at spindle pole bodies (SPBs) may pull MTs nucleated from the opposite SPB. Klp2-dependent nuclear congression proceeds at constant speed, whereas dynein accumulation results in an increase of nuclear velocity over time. Surprisingly, the light intermediate chain Dli1, but not dynactin, is required for this previously unknown function of dynein. We conclude that efficient nuclear congression depends on the cooperation of two minus end-directed motors.


Assuntos
Núcleo Celular/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transporte Proteico , Schizosaccharomyces/ultraestrutura
19.
J Cell Sci ; 128(8): 1481-93, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25736294

RESUMO

Spindle pole biogenesis and segregation are tightly coordinated to produce a bipolar mitotic spindle. In yeasts, the spindle pole body (SPB) half-bridge composed of Sfi1 and Cdc31 duplicates to promote the biogenesis of a second SPB. Sfi1 accumulates at the half-bridge in two phases in Schizosaccharomyces pombe, from anaphase to early septation and throughout G2 phase. We found that the function of Sfi1-Cdc31 in SPB duplication is accomplished before septation ends and G2 accumulation starts. Thus, Sfi1 early accumulation at mitotic exit might correspond to half-bridge duplication. We further show that Cdc31 phosphorylation on serine 15 in a Cdk1 (encoded by cdc2) consensus site is required for the dissociation of a significant pool of Sfi1 from the bridge and timely segregation of SPBs at mitotic onset. This suggests that the Cdc31 N-terminus modulates the stability of Sfi1-Cdc31 arrays in fission yeast, and impacts on the timing of establishment of spindle bipolarity.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ligação a Calmodulina/fisiologia , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/citologia , Corpos Polares do Fuso/fisiologia , Proteína Quinase CDC2/fisiologia , Citocinese , Mitose
20.
Proc Natl Acad Sci U S A ; 111(50): 17899-904, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25422470

RESUMO

Cellular morphogenesis relies partly on cell polarization by the cytoskeleton. In the fission yeast Schizosaccharomyces pombe, it is well established that microtubules (MTs) deliver the spatial cue Tea1, a kelch repeat protein, to the tip regions to direct the growth machinery at the cell tips driving the linear extension of the rod-shaped organism to maintain a straight long axis. Here, we report the characterization of Knk1 (kink), a previously unidentified member of the superfamily of ATPases associated with various cellular activities (AAA(+)), whose deletion causes a unique morphological defect characterized by the formation of kinks close to cell tips. Through genetic analysis, we place Knk1 into a novel pathway controlling cell shape independently of MTs and Tea1. Knk1 localizes at cell tips. Its localization is mediated by the Knk1 N terminus and is enhanced upon ATP binding to the C-terminal ATPase domain. Furthermore, Knk1 tip recruitment is regulated by SRC-like adaptor 2 (Sla2) and cell division cycle 42 (Cdc42) independently of Sla2's role in endocytosis. Finally, we discovered that Knk1 shows an anticorrelated oscillatory behavior between the two cell tips at a periodicity that is different from the reported oscillatory Cdc42 dynamics.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Morfogênese/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Transdução de Sinais/genética , Relógios Biológicos/genética , Western Blotting , Biologia Computacional , Microscopia de Fluorescência , Microtúbulos/metabolismo , Morfogênese/fisiologia , Schizosaccharomyces/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...