Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 41(8): 1828-1843, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30106706

RESUMO

Recent data-driven approaches to scene interpretation predominantly pose inference as an end-to-end black-box mapping, commonly performed by a Convolutional Neural Network (CNN). However, decades of work on perceptual organization in both human and machine vision suggest that there are often intermediate representations that are intrinsic to an inference task, and which provide essential structure to improve generalization. In this work, we explore an approach for injecting prior domain structure into neural network training by supervising hidden layers of a CNN with intermediate concepts that normally are not observed in practice. We formulate a probabilistic framework which formalizes these notions and predicts improved generalization via this deep supervision method. One advantage of this approach is that we are able to train only from synthetic CAD renderings of cluttered scenes, where concept values can be extracted, but apply the results to real images. Our implementation achieves the state-of-the-art performance of 2D/3D keypoint localization and image classification on real image benchmarks including KITTI, PASCAL VOC, PASCAL3D+, IKEA, and CIFAR100. We provide additional evidence that our approach outperforms alternative forms of supervision, such as multi-task networks.

2.
IEEE Trans Pattern Anal Mach Intell ; 36(7): 1285-98, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26353303

RESUMO

The success of commercial image stitching tools often leads to the impression that image stitching is a "solved problem". The reality, however, is that many tools give unconvincing results when the input photos violate fairly restrictive imaging assumptions; the main two being that the photos correspond to views that differ purely by rotation, or that the imaged scene is effectively planar. Such assumptions underpin the usage of 2D projective transforms or homographies to align photos. In the hands of the casual user, such conditions are often violated, yielding misalignment artifacts or "ghosting" in the results. Accordingly, many existing image stitching tools depend critically on post-processing routines to conceal ghosting. In this paper, we propose a novel estimation technique called Moving Direct Linear Transformation (Moving DLT) that is able to tweak or fine-tune the projective warp to accommodate the deviations of the input data from the idealized conditions. This produces as-projective-as-possible image alignment that significantly reduces ghosting without compromising the geometric realism of perspective image stitching. Our technique thus lessens the dependency on potentially expensive postprocessing algorithms. In addition, we describe how multiple as-projective-as-possible warps can be simultaneously refined via bundle adjustment to accurately align multiple images for large panorama creation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...