Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
Isotopes Environ Health Stud ; 60(3): 309-330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946354

RESUMO

The Lower Quang Tri River Group, situated in central Vietnam, faces a myriad of challenges, notably the decline in groundwater levels and the salinisation of both groundwater and surface water, significantly impacting water availability for domestic, agricultural, and industrial purposes. To address these pressing concerns, this study adopts a comprehensive methodology integrating hydrogeological measurements, isotopic techniques, and chemical analyses of various water sources, including local precipitation, surface water bodies, reservoirs, and groundwater samples. Utilising the deuterium and oxygen-18 signatures (δ2H and δ18O) in water molecules as environmental tracers for the assessment of base flow and water sources enables a nuanced understanding of the intricate interaction between surface water and groundwater. Research findings elucidate that during the dry season, groundwater recharge primarily stems from water in the reservoirs over approximately seven months. Base flow contributes between 80 and 85 % of streamflow during the rainy season, escalating to 100 % during the dry season. The mean travelling time of the base flow is estimated at 120 ± 10 days using the sine curve model developed by Rodgers et al. The insights gleaned from this study are poised to play a pivotal role in guiding the local water resources managers in licensing for the exploitation of a right quantities of groundwater as sustainable management strategies in the region.


Assuntos
Deutério , Monitoramento Ambiental , Água Subterrânea , Hidrologia , Isótopos de Oxigênio , Rios , Vietnã , Água Subterrânea/química , Água Subterrânea/análise , Isótopos de Oxigênio/análise , Deutério/análise , Monitoramento Ambiental/métodos , Rios/química , Movimentos da Água , Estações do Ano
2.
J Environ Manage ; 363: 121375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850926

RESUMO

Evaluating the forthcoming impacts of climate change is important for formulating efficient and flexible approaches to water resource management. General Circulation Models (GCMs) are primary tools that enable scientists to study both past and potential future climate changes, as well as their impacts on policies and actions. In this work, we quantify the future projected impacts of hydroclimatic extremes on the coastal, risk-prone Tar-Pamlico River basin in North Carolina using GCMs from the Sixth International Coupled Model Intercomparison Project (CMIP6). These models incorporate projected future societal development scenarios (Shared Socioeconomic Pathways, SSPs) as defined in the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Specifically, we have utilized historical residential expansion data, the Soil and Water Assessment Tool Plus (SWAT+), the Standardized Precipitation Index (SPI), and the Interquartile Range (IQR) method for analyzing extremes from 2024 to 2100. Our findings include: (1) a trend toward wetter conditions is identified with an increase in flood events toward 2100; (2) projected increases in the severity of flood peaks are found, quantified by a rise of 21% compared to the 2000-2020 period; (3) downstream regions are forecast to experience severe droughts up to 2044; and (4) low-lying and coastal regions are found as particularly susceptible to higher flood peaks and more frequent drought events between 2045 and 2100. This work provides valuable insights into the anticipated shifts in natural disaster patterns and supports decision-makers and authorities in promoting adaptive strategies and sustainable policies to address challenges posed by future climate changes in the Tar-Pamlico region and throughout the state of North Carolina, United States.


Assuntos
Mudança Climática , Rios , North Carolina , Inundações , Secas
3.
Medicina (Kaunas) ; 60(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929629

RESUMO

Background and Objectives: Malaria continues to be a significant global health challenge. The efficacy of artemisinin-based combination therapies (ACTs) has declined in many parts of the Greater Mekong Subregion, including Vietnam, due to the spread of resistant malaria strains. This study was conducted to assess the efficacy of the Dihydroartemisinin (DHA)-Piperaquine (PPQ) regimen in treating uncomplicated falciparum malaria and to conduct molecular surveillance of antimalarial drug resistance in Binh Phuoc and Dak Nong provinces. Materials and Methods: The study included 63 uncomplicated malaria falciparum patients from therapeutic efficacy studies (TES) treated following the WHO treatment guidelines (2009). Molecular marker analysis was performed on all 63 patients. Methods encompassed Sanger sequencing for pfK13 mutations and quantitative real-time PCR for the pfpm2 gene. Results: This study found a marked decrease in the efficacy of the DHA-PPQ regimen, with an increased rate of treatment failures at two study sites. Genetic analysis revealed a significant presence of pfK13 mutations and pfpm2 amplifications, indicating emerging resistance to artemisinin and its partner drug. Conclusions: The effectiveness of the standard DHA-PPQ regimen has sharply declined, with rising treatment failure rates. This decline necessitates a review and possible revision of national malaria treatment guidelines. Importantly, molecular monitoring and clinical efficacy assessments together provide a robust framework for understanding and addressing detection drug resistance in malaria.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Plasmodium falciparum , Quinolinas , Humanos , Artemisininas/uso terapêutico , Quinolinas/uso terapêutico , Vietnã , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Masculino , Feminino , Adulto , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Resistência a Medicamentos/genética , Adolescente , Pessoa de Meia-Idade , Quimioterapia Combinada/métodos , Adulto Jovem , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real , Mutação , Piperazinas
4.
Molecules ; 29(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893494

RESUMO

Syzgium cumini (L.) Skeels powder (S. cumini powder), also known as Jamun, is well-known for its various medical and health benefits. It is especially recognized for its antidiabetic and antioxidant properties. Thus, S. cumini powder is used in various industries, such as the food and cosmetic industries. In this work, the fruit of S. cumini was utilized; its seeds were extracted, dried, and ground into powder. The ground powders were subjected to various techniques such as physicochemical tests, Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), particle size analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and antioxidant analysis. From the physicochemical tests, it was revealed that the jamun seed filler contained cellulose (43.28%), hemicellulose (19.88%), lignin (23.28%), pectin (12.58%), and wax (0.98%). The FTIR analysis supported these results. For instance, a peak at 2889 cm-1 was observed and associated with CH stretching, typically found in methyl and methylene groups, characteristic of cellulose and hemicellulose structures. The XRD results demonstrated that the crystallinity index of the jamun seed filler was 42.63%. The particle analysis indicated that the mean (average) particle size was 25.34 µm. This observation was ensured with SEM results. The EDX spectrum results showed the elemental composition of the fillers. Regarding thermal degradation, the jamun seed filler had the ability to withstand temperatures of up to 316.5 °C. Furthermore, endothermic and exothermic peaks were observed at 305 °C and 400 °C, respectively. Furthermore, the antioxidant property of the powder displayed a peak scavenging activity of 91.4%. This comprehensive study not only underscores the viability of S. cumini powder as a sustainable and effective particulate filler in polymer composites but also demonstrates its potential to enhance the mechanical properties of composites, thereby offering significant implications for the development of eco-friendly materials in various industrial applications.

6.
Sci Total Environ ; 947: 174289, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944311

RESUMO

Coastal regions face climate-induced threats that have likely increased over the past four decades. In this work, we quantify the future climate impacts on hydroclimatic extremes in the risk-prone, 15-m-above-sea-level Eastern Shore of Virginia (ESVA) region, utilizing the Sixth International Coupled Model Intercomparison Project (CMIP6) Assessment Report 6 (AR6) and General Circulation Models (GCMs). We incorporate historical data on demographics and disasters, land use land cover (LULC), Landsat imagery, and sea level rise (SLR) to better understand and highlight the correlation between hydroclimatic extremes and societal components in this region. The hydrological model Soil and Water Assessment Tool (SWAT), Standardized Precipitation Index (SPI), Normalized Difference Water Index (NDWI), and Interquartile Range (IQR) method have been used to evaluate the intensity and frequency of projected climate extremes, in which SLR projections under different greenhouse gas emission pathways are temporally and spatially quantified. Our findings include (1) a trend towards wetter conditions is found with an increase in the number of flood events and up to an 8.9 % rise in the severity of flood peaks compared to the 2003-2020 period; (2) current coastal high-risk regions, identified using historical data of natural disasters, demographics, and LULC, are projected to be more susceptible to future climate impacts; and (3) low-lying coastal towns and regions are identified as currently vulnerable to coastal and SLR-induced flooding and are projected to become even more susceptible by 2100. This is the first effort that provides a valuable scientific basis for anticipated shifts in future climate patterns, essential for natural hazard prevention in ESVA. It highlights the need for authorities and decision-makers to plan and implement adaptive strategies and sustainable policies for the ESVA region and other coastal areas across the United States.

7.
Chem Asian J ; 19(14): e202400162, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705851

RESUMO

Hydrotalcite-silver (HT-Ag) nanoparticles have been involved in various daily crucial applications, such as antibacterial, photocatalytic, adsorption, etc. There are many approaches to synthesizing silver nanoparticles (AgNPs) decorated on hydrotalcite (HT) surface and the most used approach is using a strong reducing agent. Thus, affordable but effective "green" reducing agents - Syzygium nervosum leaf extract, are taken into account in this work to solve several issues related to chemical reducing agents. This work aimed to assess the effect of Syzygium nervosum leaf extract as a reducing agent for green synthesis of AgNPs on HT through an optimizing process using response surface methodology (RSM) and the Box-Benken model. The optimal conditions for the synthesis of AgNPs on HT include a reaction time of 6.15 hours, a reaction temperature of 50 °C, and the ratio of diluted Syzygium nervosum leaf extract to reduce AgNO3 of 50.37 mL/mg. Under the optimal conditions, the yield of the reduction reaction reached 77.54 %, close to the theoretical value of 76.97 %. The optimization model was suitable for the experiment data. Besides, the morphology, density, and characteristics of AgNPs on the surface of HT layers have been determined by using Ultraviolet-visible spectroscopy, Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HR-TEM), selected area diffraction, X-ray diffraction, Dynamic light scattering (DLS), Infrared (IR) spectroscopy, Fluorescence emission spectroscopy (FE), Brunauer-Emmett-Teller (BET) methods. The spherical AgNPs were synthesized successfully on the surface of HT with the average particle size of 13.0±1.1 nm. Interestingly, HT-Ag hybrid materials can inhibit strongly the growth of E. coli, S. aureus as well as two antibiotic resistance bacterial strains, P. stutzeri B27, and antibiotic resistance E. coli. Especially, the antibacterial activity quantification and durability of the HT-Ag hybrid materials were also tested. Overall, the HT-Ag hybrid materials are very promising for application in material science and biomedicine fields.


Assuntos
Hidróxido de Alumínio , Química Verde , Hidróxido de Magnésio , Nanopartículas Metálicas , Extratos Vegetais , Prata , Syzygium , Prata/química , Nanopartículas Metálicas/química , Syzygium/química , Hidróxido de Magnésio/química , Extratos Vegetais/química , Hidróxido de Alumínio/química , Substâncias Redutoras/química , Folhas de Planta/química , Antibacterianos/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Tamanho da Partícula , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Propriedades de Superfície
8.
J Mater Chem B ; 12(27): 6627-6642, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38752707

RESUMO

The advent of three-dimensional (3D) bioprinting offers a feasible approach to construct complex structures for soft tissue regeneration. Carboxymethyl cellulose (CMC) has been emerging as a very promising biomaterial for 3D bioprinting. However, due to the inability to maintain the post-printed stability, CMC needs to be physically blended and/or chemically crosslinked with other polymers. In this context, this study presents the combination of CMC with xanthan gum (XG) and hyaluronic acid (HA) to formulate a multicomponent bioink, leveraging the printability of CMC and XG, as well as the cellular support properties of HA. The ionic crosslinking of printed constructs with iron(III) via the metal-ion coordination between ferric cations and carboxylate groups of the three polymers was introduced to induce improved mechanical strength and long-term stability. Moreover, immortalized human epidermal keratinocytes (HaCaT) and human foreskin fibroblasts (HFF) encapsulated within iron-crosslinked printed hydrogels exhibited excellent cell viability (more than 95%) and preserved morphology. Overall, the presented study highlights that the combination of these three biopolymers and the ionic crosslinking with ferric ions is a valuable strategy to be considered for the development of new and advanced hydrogel-based bioinks for soft tissue engineering applications.


Assuntos
Carboximetilcelulose Sódica , Ácido Hialurônico , Polissacarídeos Bacterianos , Engenharia Tecidual , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Polissacarídeos Bacterianos/química , Carboximetilcelulose Sódica/química , Humanos , Reagentes de Ligações Cruzadas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Ferro/química , Tinta , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Bioimpressão , Queratinócitos/efeitos dos fármacos , Queratinócitos/citologia
9.
Small ; : e2402256, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794863

RESUMO

Sodium (Na)-metal batteries (SMBs) are considered one of the most promising candidates for the large-scale energy storage market owing to their high theoretical capacity (1,166 mAh g-1) and the abundance of Na raw material. However, the limited stability of electrolytes still hindered the application of SMBs. Herein, sulfolane (Sul) and vinylene carbonate (VC) are identified as effective dual additives that can largely stabilize propylene carbonate (PC)-based electrolytes, prevent dendrite growth, and extend the cycle life of SMBs. The cycling stability of the Na/NaNi0.68Mn0.22Co0.1O2 (NaNMC) cell with this dual-additive electrolyte is remarkably enhanced, with a capacity retention of 94% and a Coulombic efficiency (CE) of 99.9% over 600 cycles at a 5 C (750 mA g-1) rate. The superior cycling performance of the cells can be attributed to the homogenous, dense, and thin hybrid solid electrolyte interphase consisting of F- and S-containing species on the surface of both the Na metal anode and the NaNMC cathode by adding dual additives. Such unique interphases can effectively facilitate Na-ion transport kinetics and avoid electrolyte depletion during repeated cycling at a very high rate of 5 C. This electrolyte design is believed to result in further improvements in the performance of SMBs.

10.
Int J Biol Macromol ; 269(Pt 1): 132122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718992

RESUMO

In the treatment of bowel diseases such as ulcerative colitis through oral administration, an effective drug delivery system targeting the colon is crucial for enhancing efficacy and minimizing side effects of therapeutic agents. This study focuses on the development of a novel nanocomposite hydrogel bead comprising a synergistic blend of biological macromolecules, namely sodium alginate (ALG) and hyaluronic acid (HA), reinforced with layered double hydroxide nanoparticles (LDHs) for the oral delivery of dual therapeutics. The synthesized hydrogel bead exhibits significantly enhanced gel strength and controllable release of methylprednisolone (MP) and curcumin (CUR), serving as an anti-inflammatory drug and a mucosal healing agent, compared to native ALG or ALG/HA hydrogel beads without LDHs. The physicochemical properties of the synthesized LDHs and hydrogel beads were characterized using various techniques, including scanning electron microscopy, zeta potential measurement, transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In vitro release studies of MP and CUR under simulated gastrointestinal tract (GIT) conditions demonstrate the superior controlled release property of the nanocomposite hydrogel bead, particularly in minimizing premature drug release in the upper GIT environment while sustaining release of over 82 % of drugs in the colonic environment. Thus, the modularly engineered carrier designed for oral colon targeting holds promise as a potential candidate for the treatment of ulcerative colitis.


Assuntos
Alginatos , Liberação Controlada de Fármacos , Ácido Hialurônico , Hidrogéis , Nanopartículas , Alginatos/química , Ácido Hialurônico/química , Hidrogéis/química , Nanopartículas/química , Administração Oral , Portadores de Fármacos/química , Humanos , Hidróxidos/química , Curcumina/química , Curcumina/administração & dosagem , Curcumina/farmacologia , Metilprednisolona/química , Metilprednisolona/administração & dosagem , Sistemas de Liberação de Medicamentos , Colite Ulcerativa/tratamento farmacológico
11.
Heliyon ; 10(10): e31447, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807867

RESUMO

Background: Antioxidant therapy is gaining traction in managing sepsis and septic shock, owing to its perceived positive impact on patient outcomes. This study sought to compare the efficacy of five antioxidant therapies (melatonin, vitamin C, vitamin E, selenium, and N-acetylcysteine, both individually and in combination with other compounds such as vitamin B1, hydrocortisone, propolis, and glutamine) in treating sepsis or septic shock in the intensive care unit (ICU). Methods: The study involved randomized and multi-arm trials with sepsis or septic shock patients using melatonin, vitamin C, vitamin E, selenium, or N-acetylcysteine. Studies were sourced from PubMed, Embase, Cochrane Library, ClinicalTrials.gov, and WHO - Clinical Trials Registry Platform for the frequentist network meta-analysis on 28-day mortality and Sequential Organ Failure Assessment (SOFA) scores. The risk of bias was assessed using the Physiotherapy Evidence Database scale. Therapies were compared directly and indirectly using R software. Results: The study of 56 trials involving 9,366 patients was included. Bias assessment revealed that 89.3 % of trials achieved excellent or good quality. Based on treatment ranking and pairwise comparisons, melatonin with propolis (SUCRA = 93.29 %) is effective in improving SOFA scores, statistically significant, with no publication bias (p= 0.73). High-dose vitamin C (SUCRA = 83.97 %), vitamin C with vitamin B1 (SUCRA = 78.72 %), and melatonin (SUCRA = 67.03 %) are potential therapies for organ dysfunction. Melatonin (SUCRA = 88.22 %) and high-dose vitamin C (SUCRA = 80.75 %) were the most effective in reducing 28-day mortality rates. However, analysis indicated that the results for 28-day mortality rates were not statistically significant. Also, these results contained publication bias (p= 0.02). Conclusion: The study offers fresh perspectives on antioxidant therapy treatments for sepsis or septic shock in ICU, emphasizing the combination of melatonin and propolis notably reduces SOFA scores for those patients.

12.
Nanoscale ; 16(18): 9084-9095, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38644676

RESUMO

Conventional diagnostic methods for lung cancer, based on breath analysis using gas chromatography and mass spectrometry, have limitations for fast screening due to their limited availability, operational complexity, and high cost. As potential replacement, among several low-cost and portable methods, chemoresistive sensors for the detection of volatile organic compounds (VOCs) that represent biomarkers of lung cancer were explored as promising solutions, which unfortunately still face challenges. To address the key problems of these sensors, such as low sensitivity, high response time, and poor selectivity, this study presents the design of new chemoresistive sensors based on hybridised porous zeolitic imidazolate (ZIF-8) based metal-organic frameworks (MOFs) and laser-scribed graphene (LSG) structures, inspired by the architecture of the human lung. The sensing performance of the fabricated ZIF-8@LSG hybrid sensors was characterised using four dominant VOC biomarkers, including acetone, ethanol, methanol, and formaldehyde, which are identified as metabolomic signatures in lung cancer patients' exhaled breath. The results using simulated breath samples showed that the sensors exhibited excellent performance for a set of these biomarkers, including fast response (2-3 seconds), a wide detection range (0.8 ppm to 50 ppm), a low detection limit (0.8 ppm), and high selectivity, all obtained at room temperature. Intelligent machine learning (ML) recognition using the multilayer perceptron (MLP)-based classification algorithm was further employed to enhance the capability of these sensors, achieving an exceptional accuracy (approximately 96.5%) for the four targeted VOCs over the tested range (0.8-10 ppm). The developed hybridised nanomaterials, combined with the ML methodology, showcase robust identification of lung cancer biomarkers in simulated breath samples containing multiple biomarkers and a promising solution for their further improvements toward practical applications.


Assuntos
Biomarcadores Tumorais , Testes Respiratórios , Grafite , Neoplasias Pulmonares , Aprendizado de Máquina , Estruturas Metalorgânicas , Compostos Orgânicos Voláteis , Neoplasias Pulmonares/diagnóstico , Estruturas Metalorgânicas/química , Humanos , Biomarcadores Tumorais/análise , Grafite/química , Compostos Orgânicos Voláteis/análise , Zeolitas/química , Técnicas Biossensoriais , Imidazóis
13.
Med Arch ; 78(2): 105-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566874

RESUMO

Background: The early establishment of prophylaxis and immediate administration of anticoagulant therapy upon the diagnosis of venous thromboembolism should be the treatment objectives in these patients. Objective: The study aimed to determine the optimal cut-off point of Calprotectin, IL-6 (interleukin-6), CRP (C reactive protein) to differentiate UC, IBS-D. Methods: A cross-sectional descriptive study of 335 individuals ≥15 years old was performed, including 31 healthy controls, 215 with IBS-D, 71 diagnosed with UC, and 18 diagnosed with CD. Receiver Operating Characteristics (ROC), sensitivity, specificity, and area under curve (AUC) were computed. Results: The results showed that the median value of calprotectin (IQR) in healthy participants was 20.0 (6.0 - 34.0) µg/g; 17,7 (8,7-38,9) µg/g in IBS-D group; 1710.0 (588 - 4260,0) µg/g in UC group; and 560.5 (177.8 - 1210.0) µg/g in CD group. Calprotectin concentration in IBD group including UC and CD was higher than IBS-D with p<0.05. The median value of CRP (range IQR) was 1,3 (0,9 - 2,3) mg/L in IBS-D group; 7.0 (2.4 -16.6) mg/L in UC group; and 10.1 (2.2 - 42.5) mg/L in CD group. CRP concentration in IBD group including UC and CD was higher than IBS-D with p<0.05. The median value of IL-6 (range IQR) was 2.3 (1.6 - 5.7) pg/mL in IBS-D group; 16.8 (9.4 - 47.0) pg/mL in UC group; and 9.4 (7.9 - 11.0) pg/mL in CD group. Calprotectin concentration in IBD group including UC and CD was higher than IBS-D with p<0.05. The optimal cut-off point of calprotectin that differentiated IBS-D from IBD was 110.5 µg/g, with sensitivity and specificity of 93.3% and 91.4%, respectively; of IL-6 was 7.2 pg/mL with sensitivity and specificity of 92.0% and 78.0%, respectively; of CRP of 2.4 mg/L had specific sensitivities of 83.3% and 86.0%, respectively. Conclusion: The Calprotectin immunoassay has the best value in discriminating between IBD and IBS-D.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Adolescente , Humanos , Biomarcadores/metabolismo , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/metabolismo , Estudos Transversais , Diarreia , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-6/metabolismo , Síndrome do Intestino Irritável/diagnóstico , Complexo Antígeno L1 Leucocitário/metabolismo
14.
Nat Prod Res ; : 1-10, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600840

RESUMO

This phytochemistry investigation on the trunk of Morus alba L. resulted in the isolation of three triterpenoids, including a new gammacerane triterpenoid - morusacerane (1); along with two known compounds of betulinic acid (2) and ursolic acid (3). The structure elucidation was thoroughly conducted based on 1D, 2D-NMR and HRESIMS spectra, followed by a comparison with existing literatures. The evaluation on α-glucosidase inhibitory exhibited the great potential of the application of these isolated compounds in diabetes treatments. The results show that morusacerane (1), betulinic acid (2), and ursolic acid (3) demonstrate the strong inhibitory with the IC50 values of 106.1, 11.12, and 7.20 µM, respectively. All of these compounds interacted well with the allosteric site enzyme α-glucosidase MAL32 through H-bonds and hydrophobic interaction.

15.
J Pharm Sci ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527617

RESUMO

Bioscaffolds, which promote cell regeneration and restore tissues' functions, have emerged as significant need in clinic. The hybrid of several biomaterials in a bioscaffold renders clinically advanced and relevant properties for applications yet add challenges in cost efficiency, production, and clinical investigation. This study proposes a facile and sustainable method to formulate a triple-hybrid bioscaffold based on Vietnamese cocoon origin Silk Fibroin, Chitosan, and nano-Biphasic Calcium Phosphates (nano-BCP) that can be easily molded, has high porosity (55-80%), and swelling capacity that facilitates cell proliferation and nutrient diffusion. Notably, their mechanical properties, in particular compressive strength, can easily be tuned in a range from 50 - 200 kPa by changing the amount of nano-BCP addition, which is comparable to the successful precedents for productive cell regeneration. The latter parts investigate the biopharmaceutical properties of a representative bioscaffold, including drug loading and release studies with two kinds of active compounds, salmon calcitonin and methylprednisolone. Furthermore, the bioscaffold is highly biocompatible as the results of hemocompatibility and hemostasis tests, as well as ovo chick chorioallantoic membrane investigation. The findings of the study suggest the triple-hybrid scaffold as a promising platform for multi-functional drug delivery and bone defect repair.

16.
Chemosphere ; 355: 141748, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521109

RESUMO

Sugarcane bagasse is one of the most common Vietnamese agricultural waste, which possesses a large percentage of cellulose, making it an abundant and environmentally friendly source for the fabrication of cellulose carbon aerogel. Herein, waste sugarcane bagasse was used to synthesize cellulose aerogel using different crosslinking agents such as urea, polyvinyl alcohol (PVA) and sodium alginate (SA). The 3D porous network of cellulose aerogels was constructed by intermolecular hydrogen bonding, which was confirmed by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen adsorption/desorption. Among the three cellulose aerogel samples, cellulose - SA aerogel (SB-CA-SA) has low density of 0.04 g m-3 and high porosity of 97.38%, leading to high surface area of 497.9 m2 g-1 with 55.67% micropores of activated carbon aerogel (SB-ACCA-SA). The salt adsorption capacity was high (17.87 mg g-1), which can be further enhanced to 31.40 mg g-1 with the addition of CNT. Moreover, the desalination process using the SB-ACCA-SA-CNT electrode was stable even after 50 cycles. The results show the great combination of cellulose from waste sugarcane bagasse with sodium alginate and carbon nanotubes in the fabrication of carbon materials as the CDI-utilized electrodes with high desalination capability and good durability.


Assuntos
Nanotubos de Carbono , Saccharum , Celulose/química , Saccharum/química , Alginatos
17.
Radiol Case Rep ; 19(5): 2004-2007, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38449485

RESUMO

In median arcuate ligament syndrome (MALS), the median arcuate ligament compresses the celiac trunk and surrounding nerves leading to chronic functional abdominal pain and vague gastrointestinal symptoms. MALS can be effectively treated by dividing the arcuate ligament through open surgery or laparoscopy. This is a rare vascular condition and mostly encountered in adult patients. We hereby report a case of a pediatric patient diagnosed with MALS and treated successfully by laparoscopic approach. An 11-year-old girl presented with severe abdominal cramps for 3 months, accompanied by nonbilious vomiting. Computed tomography (CT) angiography demonstrated clear images of celiac trunk compression suggesting MALS. Laparoscopic surgery to cut the ligament and decompress the celiac artery was performed. The patient was discharged on day 7 postoperative with no recurrence of symptoms after 12 months of follow-up. This report suggested the diagnostic value of CT scan, and the safety and the feasibility of laparoscopic surgical techniques to treat MALS in children.

18.
J Pestic Sci ; 49(1): 15-21, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450092

RESUMO

A lure composed of (Z)-11-hexadecenal, (Z)-11-hexadecenyl acetate, and (Z)-11-hexadecen-1-ol at a ratio of 5 : 5 : 1 at a dose of 0.01 mg was optimal for the attraction of the Vietnamese strain of the diamondback moth (DBM). The combination of the sex pheromone with a plant volatile, allyl isothiocyanate, significantly increased the attraction of the pheromone trap. Females were also attracted, but they were only about 2% of all moths captured. In plots with 120-130 traps per ha, mass trapping with the combined lures reduced the DBM larval densities in cabbage fields as effectively as the spraying of insecticides 6 to 8 times. The weekly trap catches indicated that DBM adult densities in the mass-trapping fields were low until 28 days after transplantation, and then were kept to a modest increase until day 49. This field study also shows that the trap catches were well correlated with the DBM larval densities.

19.
Science ; 383(6686): eadk1291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422154

RESUMO

SynGAP is an abundant synaptic GTPase-activating protein (GAP) critical for synaptic plasticity, learning, memory, and cognition. Mutations in SYNGAP1 in humans result in intellectual disability, autistic-like behaviors, and epilepsy. Heterozygous Syngap1-knockout mice display deficits in synaptic plasticity, learning, and memory and exhibit seizures. It is unclear whether SynGAP imparts structural properties at synapses independently of its GAP activity. Here, we report that inactivating mutations within the GAP domain do not inhibit synaptic plasticity or cause behavioral deficits. Instead, SynGAP modulates synaptic strength by physically competing with the AMPA-receptor-TARP excitatory receptor complex in the formation of molecular condensates with synaptic scaffolding proteins. These results have major implications for developing therapeutic treatments for SYNGAP1-related neurodevelopmental disorders.


Assuntos
Cognição , Plasticidade Neuronal , Proteínas Ativadoras de ras GTPase , Animais , Humanos , Camundongos , Transtorno Autístico/genética , Proteínas Ativadoras de GTPase/genética , Aprendizagem , Camundongos Knockout , Plasticidade Neuronal/genética , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Catálise
20.
Nat Prod Res ; : 1-8, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258412

RESUMO

Two new hopan-type triterpenoids, namely tinctoric acid A-B (1-2), were isolated from the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale. Their structures were elucidated by extensive spectroscopic analyses (1D and 2D NMR). The absolute configuration at C-22 of 1 was established through DP4 probability. Compounds 1-2 were evaluated for their inhibitory activity against α-glucosidase and found to be more potent than those of positive control (acarbose, IC50 168 µM) with values IC50 74.7 and 98.2 µM, respectively. Both of these compounds interacted well with enzyme α-glucosidase MAL32 through H-bonds and hydrophobic interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...