Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 176: 108560, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754218

RESUMO

Mutagenicity assessment plays a pivotal role in the safety evaluation of chemicals, pharmaceuticals, and environmental compounds. In recent years, the development of robust computational models for predicting chemical mutagenicity has gained significant attention, driven by the need for efficient and cost-effective toxicity assessments. In this paper, we proposed AMPred-CNN, an innovative Ames mutagenicity prediction model based on Convolutional Neural Networks (CNNs), uniquely employing molecular structures as images to leverage CNNs' powerful feature extraction capabilities. The study employs the widely used benchmark mutagenicity dataset from Hansen et al. for model development and evaluation. Comparative analyses with traditional ML models on different molecular features reveal substantial performance enhancements. AMPred-CNN outshines these models, demonstrating superior accuracy, AUC, F1 score, MCC, sensitivity, and specificity on the test set. Notably, AMPred-CNN is further benchmarked against seven recent ML and DL models, consistently showcasing superior performance with an impressive AUC of 0.954. Our study highlights the effectiveness of CNNs in advancing mutagenicity prediction, paving the way for broader applications in toxicology and drug development.


Assuntos
Testes de Mutagenicidade , Mutagênicos , Redes Neurais de Computação , Mutagênicos/toxicidade
2.
J Chem Inf Model ; 63(20): 6198-6211, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37819031

RESUMO

Absorption is an important area of research in pharmacochemistry and drug development, because the drug has to be absorbed before any drug effects can occur. Furthermore, the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profile of drugs can be directly and considerably altered by modulating factors affecting absorption. Many drugs in development fail because of poor absorption. The research and continuous efforts of researchers in recent years have brought many successes and promises in drug absorption property prediction, especially in silico, which helps to reduce the time and cost significantly for screening undesirable drug candidates. In this report, we explicitly provide an overview of recent in silico studies on predicting absorption properties, especially from 2019 to the present, using artificial intelligence. Additionally, we have collected and investigated public databases that support absorption prediction research. On those grounds, we also proposed the challenges and development directions of absorption prediction in the future. We hope this review can provide researchers with valuable guidelines on absorption prediction to facilitate the development of newer approaches in drug discovery.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Fenômenos Químicos , Bases de Dados Factuais
3.
J Chem Inf Model ; 63(9): 2628-2643, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37125780

RESUMO

Toxicity prediction is a critical step in the drug discovery process that helps identify and prioritize compounds with the greatest potential for safe and effective use in humans, while also reducing the risk of costly late-stage failures. It is estimated that over 30% of drug candidates are discarded owing to toxicity. Recently, artificial intelligence (AI) has been used to improve drug toxicity prediction as it provides more accurate and efficient methods for identifying the potentially toxic effects of new compounds before they are tested in human clinical trials, thus saving time and money. In this review, we present an overview of recent advances in AI-based drug toxicity prediction, including the use of various machine learning algorithms and deep learning architectures, of six major toxicity properties and Tox21 assay end points. Additionally, we provide a list of public data sources and useful toxicity prediction tools for the research community and highlight the challenges that must be addressed to enhance model performance. Finally, we discuss future perspectives for AI-based drug toxicity prediction. This review can aid researchers in understanding toxicity prediction and pave the way for new methods of drug discovery.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Aprendizado de Máquina , Bioensaio , Descoberta de Drogas
4.
Pharmaceutics ; 15(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111744

RESUMO

Drug metabolism and excretion play crucial roles in determining the efficacy and safety of drug candidates, and predicting these processes is an essential part of drug discovery and development. In recent years, artificial intelligence (AI) has emerged as a powerful tool for predicting drug metabolism and excretion, offering the potential to speed up drug development and improve clinical success rates. This review highlights recent advances in AI-based drug metabolism and excretion prediction, including deep learning and machine learning algorithms. We provide a list of public data sources and free prediction tools for the research community. We also discuss the challenges associated with the development of AI models for drug metabolism and excretion prediction and explore future perspectives in the field. We hope this will be a helpful resource for anyone who is researching in silico drug metabolism, excretion, and pharmacokinetic properties.

5.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768139

RESUMO

Drug distribution is an important process in pharmacokinetics because it has the potential to influence both the amount of medicine reaching the active sites and the effectiveness as well as safety of the drug. The main causes of 90% of drug failures in clinical development are lack of efficacy and uncontrolled toxicity. In recent years, several advances and promising developments in drug distribution property prediction have been achieved, especially in silico, which helped to drastically reduce the time and expense of screening undesired drug candidates. In this study, we provide comprehensive knowledge of drug distribution background, influencing factors, and artificial intelligence-based distribution property prediction models from 2019 to the present. Additionally, we gathered and analyzed public databases and datasets commonly utilized by the scientific community for distribution prediction. The distribution property prediction performance of five large ADMET prediction tools is mentioned as a benchmark for future research. On this basis, we also offer future challenges in drug distribution prediction and research directions. We hope that this review will provide researchers with helpful insight into distribution prediction, thus facilitating the development of innovative approaches for drug discovery.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...