Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(29): 25433-25442, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910106

RESUMO

Herein, for the first time, we present two-dimensional (2D) NH4V3O8 nanoflakes as an excellent material for both energy conversion of the hydrogen evolution reaction and storage of supercapacitors by a simple and fast two-step synthesis, which exhibit a completely sheet-like morphology, high crystallinity, good specific surface area, and also stability, as determined by thermogravimetric analysis. The 2D-NH4V3O8 flakes show an acceptable hydrogen evolution performance in 0.5 M H2SO4 on a glassy carbon electrode (GCE) coated with 2D-NH4V3O8, which results in a low overpotential of 314 mV at -10 mA cm-2 with an excellent Tafel slope as low as 90 mV dec-1. So far, with the main focus on energy storage, 2D-NH4V3O8 nanoflakes were found to be ideal for supercapacitor electrodes. The NH4V3O8 working electrode in 1 M Na2SO4 shows an excellent electrochemical capability of 274 F g-1 at 0.5 A g-1 for a maximum energy density of 38 W h kg-1 at a power density as high as 250 W kg-1. Moreover, the crystal structure of 2D-NH4V3O8 is demonstrated by density functional theory (DFT) computational simulation using three functionals, GGA, GGA + U, and HSE06. The simple preparation, low cost, and abundance of the NH4V3O8 material provide a promising candidate for not only energy conversion but also energy-storage applications.

2.
ACS Omega ; 7(12): 10115-10126, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382300

RESUMO

The aim of this study is to prepare a two-dimensional (2D) WO3·H2O nanostructure assembly into a flower shape with good chemical stability for electrochemical studies of catalyst and energy storage applications. The 2D-WO3·H2O nanoflowers structure is created by a fast and simple process at room condition. This cost-effective and scalable technique to obtain 2D-WO3·H2O nanoflowers illustrates two attractive applications of electrochemical capacitor with an excellent energy density value of 25.33 W h kg-1 for high power density value of 1600 W kg-1 and good hydrogen evolution reaction results (low overpotential of 290 mV at a current density of 10 mA cm-2 with a low Tafel slope of 131 mV dec-1). A hydrogen evolution reaction (HER) study of WO3 in acidic media of 0.5 M H2SO4 and electrochemical capacitor (supercapacitors) in 1 M Na2SO4 aqueous electrolyte (three electrode system measurements) demonstrates highly desirable characteristics for practical applications. Our design for highly uniform 2D-WO3·H2O as catalyst material for HER and active material for electrochemical capacitor studies offers an excellent foundation for design and improvement of electrochemical catalyst based on 2D-transition metal oxide materials.

3.
ACS Omega ; 5(10): 5429-5435, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201834

RESUMO

The crystal structure, electronic structure, and diffusion mechanism of Na ions in the cathode material Na2Mn3(SO4)4 are investigated based on the Heyd-Scuseria-Ernzerhof hybrid density functional method. The simultaneous motion model of polaron-sodium vacancy complexes was used to reveal the diffusion mechanism of Na ions in this material. Polaron formation at the Mn third-nearest neighbor to the Na vacancy was found. Two crossing and two parallel elementary diffusion processes of the polaron-Na vacancy complex were explored. The most preferable elementary diffusion process has an activation energy of 852 meV, which generates a zigzag-like pathway of Na-ion diffusion along the [001] direction in the whole material. Possessing a voltage of 4.4 V and an activation energy of 852 meV, Na2Mn3(SO4)4 is expected to be a good cathode material for rechargeable sodium ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...