Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vector Ecol ; 46(2): 163-172, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35230021

RESUMO

Predators and their interactions with target prey influence the efficiency of control strategies. In the present study, we demonstrate the implementation of natural predator selection for controlling dengue vectors in northern Vietnam through field-based observation of aquatic insect predators in natural habitats and lab-based assessment of predatorial capacities for several aquatic insect predators. The selected species was then used to evaluate the predatory-prey interaction using functional responses (FRs) toward 3rd- and 4th-instar larvae of four major medical mosquito species (Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus). The preference of selected predators for Ae. aegypti larvae over other mosquito larvae was also investigated. Both field observation and lab experiments indicated that the giant water bug Diplonychus rusticus was abundant and exhibited the highest predatory capacity for mosquito larvae. The predator exhibited type II FRs when offered each of the four prey species, and the greatest attack rates were observed for Ae. aegypti and Ae. albopictus, with only negligible differences observed in the handling times of the prey species. Further, Manly's selectivity (α) values calculated from the prey choice experiments showed that Ae. aegypti was preferred over both Cx. quinquefasciatus and An. minimus. Together, these findings indicate that D. rusticus could be successfully used to facilitate the biological control of both Ae. aegypti and Ae. albopictus within the species' distributional overlap in Southeast Asia.


Assuntos
Aedes , Culex , Dengue , Animais , Dengue/prevenção & controle , Larva , Mosquitos Vetores , Vietnã
2.
Front Plant Sci ; 6: 551, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300889

RESUMO

The economically important DT2008 and the model Williams 82 (W82) soybean cultivars were reported to have differential drought-tolerant degree to dehydration and drought, which was associated with root trait. Here, we used 66K Affymetrix Soybean Array GeneChip to compare the root transcriptomes of DT2008 and W82 seedlings under normal, as well as mild (2 h treatment) and severe (10 h treatment) dehydration conditions. Out of the 38172 soybean genes annotated with high confidence, 822 (2.15%) and 632 (1.66%) genes showed altered expression by dehydration in W82 and DT2008 roots, respectively, suggesting that a larger machinery is required to be activated in the drought-sensitive W82 cultivar to cope with the stress. We also observed that long-term dehydration period induced expression change of more genes in soybean roots than the short-term one, independently of the genotypes. Furthermore, our data suggest that the higher drought tolerability of DT2008 might be attributed to the higher number of genes induced in DT2008 roots than in W82 roots by early dehydration, and to the expression changes of more genes triggered by short-term dehydration than those by prolonged dehydration in DT2008 roots vs. W82 roots. Differentially expressed genes (DEGs) that could be predicted to have a known function were further analyzed to gain a basic understanding on how soybean plants respond to dehydration for their survival. The higher drought tolerability of DT2008 vs. W82 might be attributed to differential expression in genes encoding osmoprotectant biosynthesis-, detoxification- or cell wall-related proteins, kinases, transcription factors and phosphatase 2C proteins. This research allowed us to identify genetic components that contribute to the improved drought tolerance of DT2008, as well as provide a useful genetic resource for in-depth functional analyses that ultimately leads to development of soybean cultivars with improved tolerance to drought.

3.
Front Plant Sci ; 6: 449, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26150822

RESUMO

Drought causes detrimental effect to growth and productivity of many plants, including crops. NAC transcription factors have been reported to play important role in drought tolerance. In this study, we assessed the expression profiles of 19 dehydration-responsive CaNAC genes in roots and leaves of two contrasting drought-responsive chickpea varieties treated with water (control) and dehydration to examine the correlation between the differential expression levels of the CaNAC genes and the differential drought tolerability of these two cultivars. Results of real-time quantitative PCR indicated a positive relationship between the number of dehydration-inducible and -repressible CaNAC genes and drought tolerability. The higher drought-tolerant capacity of ILC482 cultivar vs. Hashem cultivar might be, at least partly, attributed to the higher number of dehydration-inducible and lower number of dehydration-repressible CaNAC genes identified in both root and leaf tissues of ILC482 than in those of Hashem. In addition, our comparative expression analysis of the selected CaNAC genes in roots and leaves of ILC482 and Hashem cultivars revealed different dehydration-responsive expression patterns, indicating that CaNAC gene expression is tissue- and genotype-specific. Furthermore, the analysis suggested that the enhanced drought tolerance of ILC482 vs. Hashem might be associated with five genes, namely CaNAC02, 04, 05, 16, and 24. CaNAC16 could be a potential candidate gene, contributing to the better drought tolerance of ILC482 vs. Hashem as a positive regulator. Conversely, CaNAC02 could be a potential negative regulator, contributing to the differential drought tolerability of these two cultivars. Thus, our results have also provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.

4.
PLoS One ; 9(12): e114107, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479253

RESUMO

The plant-specific NAC transcription factors (TFs) play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum) and assess their expression profiles during plant development and under dehydration and abscisic acid (ABA) treatments in a systematic manner. Seventy-one CaNAC genes were detected from the chickpea genome, including 8 membrane-bound members of which many might be involved in dehydration responses as judged from published literature. Phylogenetic analysis of the chickpea and well-known stress-related Arabidopsis and rice NACs enabled us to predict several putative stress-related CaNACs. By exploring available transcriptome data, we provided a comprehensive expression atlas of CaNACs in various tissues at different developmental stages. With the highest interest in dehydration responses, we examined the expression of the predicted stress-related and membrane-bound CaNACs in roots and leaves of chickpea seedlings, subjected to well-watered (control), dehydration and ABA treatments, using real-time quantitative PCR (RT-qPCR). Nine-teen of the 23 CaNACs examined were found to be dehydration-responsive in chickpea roots and/or leaves in either ABA-dependent or -independent pathway. Our results have provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.


Assuntos
Cicer/genética , Família Multigênica/genética , Filogenia , Fatores de Transcrição/biossíntese , Ácido Abscísico/administração & dosagem , Arabidopsis , Cicer/crescimento & desenvolvimento , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estresse Fisiológico , Fatores de Transcrição/genética
5.
Proc Natl Acad Sci U S A ; 111(2): 851-6, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379380

RESUMO

This report provides direct evidence that strigolactone (SL) positively regulates drought and high salinity responses in Arabidopsis. Both SL-deficient and SL-response [more axillary growth (max)] mutants exhibited hypersensitivity to drought and salt stress, which was associated with shoot- rather than root-related traits. Exogenous SL treatment rescued the drought-sensitive phenotype of the SL-deficient mutants but not of the SL-response mutant, and enhanced drought tolerance of WT plants, confirming the role of SL as a positive regulator in stress response. In agreement with the drought-sensitive phenotype, max mutants exhibited increased leaf stomatal density relative to WT and slower abscisic acid (ABA)-induced stomatal closure. Compared with WT, the max mutants exhibited increased leaf water loss rate during dehydration and decreased ABA responsiveness during germination and postgermination. Collectively, these results indicate that cross-talk between SL and ABA plays an important role in integrating stress signals to regulate stomatal development and function. Additionally, a comparative microarray analysis of the leaves of the SL-response max2 mutant and WT plants under normal and dehydrative conditions revealed an SL-mediated network controlling plant responses to stress via many stress- and/or ABA-responsive and cytokinin metabolism-related genes. Our results demonstrate that plants integrate multiple hormone-response pathways for adaptation to environmental stress. Based on our results, genetic modulation of SL content/response could be applied as a potential approach to reduce the negative impact of abiotic stress on crop productivity.


Assuntos
Arabidopsis/fisiologia , Secas , Regulação da Expressão Gênica de Plantas/fisiologia , Lactonas/farmacologia , Estômatos de Plantas/fisiologia , Salinidade , Estresse Fisiológico/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/fisiologia , Análise em Microsséries , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/efeitos dos fármacos
6.
DNA Res ; 20(5): 511-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23810914

RESUMO

In plants, the auxin response factor (ARF) transcription factors play important roles in regulating diverse biological processes, including development, growth, cell division and responses to environmental stimuli. An exhaustive search of soybean genome revealed 51 GmARFs, many of which were formed by genome duplications. The typical GmARFs (43 members) contain a DNA-binding domain, an ARF domain and an auxin/indole acetic acid (AUX/IAA) dimerization domain, whereas the remaining eight members lack the dimerization domain. Phylogenetic analysis of the ARFs from soybean and Arabidopsis revealed both similarity and divergence between the two ARF families, as well as enabled us to predict the functions of the GmARFs. Using quantitative real-time polymerase chain reaction (qRT-PCR) and available soybean Affymetrix array and Illumina transcriptome sequence data, a comprehensive expression atlas of GmARF genes was obtained in various organs and tissues, providing useful information about their involvement in defining the precise nature of individual tissues. Furthermore, expression profiling using qRT-PCR and microarray data revealed many water stress-responsive GmARFs in soybean, albeit with different patterns depending on types of tissues and/or developmental stages. Our systematic analysis has identified excellent tissue-specific and/or stress-responsive candidate GmARF genes for in-depth in planta functional analyses, which would lead to potential applications in the development of genetically modified soybean cultivars with enhanced drought tolerance.


Assuntos
Adaptação Fisiológica , Genoma de Planta , Glycine max/genética , Ácidos Indolacéticos , Estresse Fisiológico , Água , Cromossomos de Plantas , Secas , Filogenia , Reação em Cadeia da Polimerase , Glycine max/fisiologia
7.
Biomed Res Int ; 2013: 759657, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23509774

RESUMO

Soybean (Glycine max) productivity is adversely affected by drought stress worldwide, including Vietnam. In the last few years, we have made a great effort in the development of drought-tolerant soybean cultivars by breeding and/or radiation-induced mutagenesis. One of the newly developed cultivars, the DT2008, showed enhanced drought tolerance and stable yield in the field conditions. The purpose of this study was to compare the drought-tolerant phenotype of DT2008 and Williams 82 (W82) by assessing their water loss and growth rate under dehydration and/or drought stress conditions as a means to provide genetic resources for further comparative and functional genomics. We found that DT2008 had reduced water loss under both dehydration and drought stresses in comparison with W82. The examination of root and shoot growths of DT2008 and W82 under both normal and drought conditions indicated that DT2008 maintains a better shoot and root growth rates than W82 under both two growth conditions. These results together suggest that DT2008 has better drought tolerance degree than W82. Our results open the way for further comparison of DT2008 and W82 at molecular levels by advanced omic approaches to identify mutation(s) involved in the enhancement of drought tolerance of DT2008, contributing to our understanding of drought tolerance mechanisms in soybean. Mutation(s) identified are potential candidates for genetic engineering of elite soybean varieties to improve drought tolerance and biomass.


Assuntos
Produtos Agrícolas/genética , Secas , Glycine max/genética , Estresse Fisiológico , Biomassa , Cruzamento , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutagênese , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...