Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(26): 68848-68862, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37129816

RESUMO

In this report, we demonstrate a novel plastic boat capable of selectively and efficiently collecting spilled oils while floating on water. The boat has macroscopic openings in its vertical and curved sidewalls. It is easily, quickly, and inexpensively fabricated using an environmentally friendly polymer via a three-dimensional printing technique. Its surface is sequentially coated with nano-ceramic coating liquid and oil, which imparts favorable hydrophobic, oleophilic, and high oil-wettability properties. Using the boat prototype, a small pump system, and an oil boom-like device, we demonstrate that spilled oils with a wide range of viscosities (2.0-1000 cSt at 25-40 °C) are rapidly collected from the surface of both pure water and seawater. Remarkably, it efficiently collects oil spills on seawater under wavy conditions, and the retrieved oil does not mix with any drop of water. Moreover, the boat can be scaled up to a large size easily and has a long-term usage. By exhibiting these characteristics, our developed boat is a prominent potential device for practical oil retrieval applications.


Assuntos
Poluição por Petróleo , Água , Água/química , Navios , Plásticos , Poluição por Petróleo/análise , Óleos/química
2.
Micromachines (Basel) ; 14(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838095

RESUMO

As 3D-printed (3DP) patterns are solid and durable, they can be used to create thin wall castings, which is complicated with wax patterns because of the wax's fragility and high shrinkage ratio. According to this study's experiment results, polylactic acid (PLA), polyvinyl butyral (PVB), and castable wax (CW) are suitable materials for preparing investment casting (IC) cavities. The results indicate that the casting product with the highest-quality surface is obtained using a cavity prepared using a CW-printed pattern. PLA- and PVB-printed patterns provide a good surface finish for casted products. In addition, the roughness of both the printed and casted surfaces increases as the printing layer height increases. The roughness of the casted surface varies from 2.25 µm to 29.17 µm. This investigation also considers the correlation between the infill ratio and mechanical properties of PLA-printed patterns. An increase in the infill ratios from 0% to 100% leads to a significant increase in the tensile properties of the PLA-printed pattern. The obtained results can be practically used.

3.
ACS Appl Mater Interfaces ; 11(27): 24598-24608, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246394

RESUMO

Conductive hydrogels are attracting increasing attention owing to their great potential for applications in flexible devices. For practical use, these high-water-content materials should not only show good conductivity but also be strong, stretchable, tough, and elastic. Herein, we describe a class of novel conductive tough hydrogels based on strong staggered Fe3+-carboxyl coordinating interactions. They are made from copolymers of acrylamide and N-acryloyl glutamic acid, a bidentate-based comonomer. The design of the staggered structure of Fe3+ and bidentate units is expected to enable energy dissipation and also results in a synergetic effect of two binding sites for fast self-recovery. We demonstrate that the equilibrated hydrogels with a water content of 53 wt % exhibit superior mechanical properties (e.g., highest tensile strength, 12.1 MPa; Young's modulus, 36.1 MPa; work of extension, 42.1 MJ m-3; fracture energy, 10,691 J m-2; compressive strength, 65.1 MPa at 98% strain without a macroscopic fracture) compared to the ion-coordinated hydrogels reported to date, including elasticity at small strain, fast self-recoverability at room temperature (∼25 °C), a high dielectric constant (k = 341-1395 at 100 kHz), and good electrical conductivity (0.0018-0.024 S cm-1). Given their extraordinary overall characteristics, we envision their potential applications in flexible electronic devices.

4.
Water Res ; 145: 640-649, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30205335

RESUMO

We demonstrate a hydrogel bowl capable of selectively and rapidly collecting spilled oil while floating on water. The bowl has macroscopic openings in its sidewall, and its surface is first coated with octadecyltrichlorosilane (OTS) and then with diffusion pump oil, which imparts exceptional hydrophobic, oleophilic, and high oil wettability properties. The use of a hydrogel makes it possible to obtain surface hydrophobicity and oleophilicity, while also being inexpensive, eco-friendly, and easy to fabricate. Using a prototype of the bowl and a small pump system, we demonstrate that oils with a broad range of viscosities (2.7-2000.0 cSt at 20-40 °C) are more rapidly and efficiently collected from the surface of both pure water and seawater than with any other reported technique. The hydrogel bowl can collect oil for more than one month without losing its efficiency and can be stored in oil for reuse. Therefore, such hydrogel bowls represent a new alternative to conventional oil spill remediation techniques.


Assuntos
Poluição por Petróleo , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Óleos , Água
5.
Soft Matter ; 14(37): 7706-7713, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30187062

RESUMO

A bio-inspired, simple, and versatile diffusion-driven method to fabricate complex tubular hydrogels is reported. The controlled diffusion of small ions from a pre-designed core hydrogel through a biopolymer reservoir solution causes the self-gelation of biopolymers with an anisotropic ordered structure on the surface of the core hydrogel. By controlling the concentration, diffusion time, and flow direction of the ions, as well as the size and shape of the core, various types of complex tubular-shaped hydrogels with well-defined 3D architectures were fabricated. The mechanical properties of the designed alginate-based tubular hydrogels were highly tunable and comparable to those of native blood vessels. The method was applied to form a living-cell encapsulated tubular hydrogel, which further strengthens its potential for biomedical applications. The method is suitable for biopolymer-based reaction-diffusion systems and available for further research on the fabrication of functional biomaterials with various biopolymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...