Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38662508

RESUMO

PURPOSE OF REVIEW: Endoscopy-related injuries (ERIs) are prevalent in gastrointestinal endoscopy. The aim of this review is to address the growing concern of ERIs by evaluating the ergonomic risk factors and the efficacy of interventions and educational strategies aimed at mitigating these risks, including novel approaches. RECENT FINDINGS: ERIs are highly prevalent, exacerbated by factors such as repetitive strain, nonneutral postures, suboptimal equipment design, and the procedural learning curve. Female sex and smaller hand sizes have been identified as specific risk factors. Recent guidelines underscore the importance of ergonomic education and the integration of ergonomic principles into the foundational training of gastroenterology fellows. Advances in equipment design focus on adaptability to different hand sizes and ergonomic positions. Furthermore, the incorporation of microbreaks and macrobreaks, along with neutral monitor and bed positioning, has shown promise in reducing the incidence of ERIs. Wearable sensors may be helpful in monitoring and promoting ergonomic practices among trainees. SUMMARY: Ergonomic wellness is paramount for gastroenterology trainees to prevent ERIs and ensure a sustainable career. Effective strategies include ergonomic education integrated into curricula, equipment design improvements, and procedural adaptations such as scheduled breaks and optimal positioning. Sensor-based and camera-based systems may allow for education and feedback to be provided regarding ergonomics to trainees in the future.

2.
Radiol Imaging Cancer ; 6(2): e230029, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38391311

RESUMO

Purpose To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predicting treatment response in individuals with head and neck squamous cell carcinoma (HNSCC). Materials and Methods This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47-80 years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39-79 years}, 33 male, one female) with bulky node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation in 33-35 fractions over 6-7 weeks. US radiofrequency data from metastatic lymph nodes were acquired prior to and after 1 week of RT. QUS analysis resulted in five spectral maps from which mean values were extracted. We applied a gray-level co-occurrence matrix technique for textural analysis, leading to 20 QUS texture and 80 texture-derivative parameters. The response 3 months after RT was used as the end point. Model building and evaluation utilized nested leave-one-out cross-validation. Results Five delta (Δ) parameters had statistically significant differences (P < .05). The support vector machines classifier achieved a sensitivity of 71% (15 of 21), a specificity of 76% (26 of 34), a balanced accuracy of 74%, and an area under the receiver operating characteristic curve of 0.77 on the test set. For all the classifiers, the performance improved after the 1st week of treatment. Conclusion A QUS Δ-radiomics model using data obtained after the 1st week of RT from individuals with HNSCC predicted response 3 months after treatment completion with reasonable accuracy. Keywords: Computer-Aided Diagnosis (CAD), Ultrasound, Radiation Therapy/Oncology, Head/Neck, Radiomics, Quantitative US, Radiotherapy, Head and Neck Squamous Cell Carcinoma, Machine Learning Clinicaltrials.gov registration no. NCT03908684 Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Neoplasias de Cabeça e Pescoço , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Pescoço , Estudos Prospectivos , Radiômica , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
3.
Genes (Basel) ; 14(9)2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37761908

RESUMO

Up to 30% of breast cancer (BC) patients will develop distant metastases (DM), for which there is no cure. Here, statistical and machine learning (ML) models were developed to estimate the risk of site-specific DM following local-regional therapy. This retrospective study cohort included 175 patients diagnosed with invasive BC who later developed DM. Clinicopathological information was collected for analysis. Outcome variables were the first site of metastasis (brain, bone or visceral) and the time interval (months) to developing DM. Multivariate statistical analysis and ML-based multivariable gradient boosting machines identified factors associated with these outcomes. Machine learning models predicted the site of DM, demonstrating an area under the curve of 0.74, 0.75, and 0.73 for brain, bone and visceral sites, respectively. Overall, most patients (57%) developed bone metastases, with increased odds associated with estrogen receptor (ER) positivity. Human epidermal growth factor receptor-2 (HER2) positivity and non-anthracycline chemotherapy regimens were associated with a decreased risk of bone DM, while brain metastasis was associated with ER-negativity. Furthermore, non-anthracycline chemotherapy alone was a significant predictor of visceral metastasis. Here, clinicopathologic and treatment variables used in ML prediction models predict the first site of metastasis in BC. Further validation may guide focused patient-specific surveillance practices.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Estudos Retrospectivos , Mama , Encéfalo , Aprendizado de Máquina
4.
Breast ; 71: 13-21, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437386

RESUMO

Radiation therapy (RT) has long been fundamental for the curative treatment of breast cancer. While substantial progress has been made in the anatomical and technological precision of RT delivery, and some approaches to de-escalate or omit RT based on clinicopathologic features have been successful, there remain substantial opportunities to refine individualised RT based on tumour biology. A major area of clinical and research interest is to ascertain the individualised risk of loco-regional recurrence to direct treatment decisions regarding escalation and de-escalation of RT. Patient-tailored treatment with RT is considerably lagging behind compared with the massive progress made in the field of personalised medicine that currently mainly applies to decisions on the use of systemic therapy or targeted agents. Herein we review select literature surrounding the use of tumour genomic biomarkers and biomarkers of the immune system, including tumour infiltrating lymphocytes (TILs), within the management of breast cancer, specifically as they relate to progress in moving toward analytically validated and clinically tested biomarkers utilized in RT.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Neoplasias da Mama/tratamento farmacológico , Linfócitos do Interstício Tumoral , Prognóstico , Biomarcadores Tumorais/genética , Genômica
5.
Med Phys ; 50(12): 7852-7864, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37403567

RESUMO

BACKGROUND: Pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) has demonstrated a strong correlation to improved survival in breast cancer (BC) patients. However, pCR rates to NAC are less than 30%, depending on the BC subtype. Early prediction of NAC response would facilitate therapeutic modifications for individual patients, potentially improving overall treatment outcomes and patient survival. PURPOSE: This study, for the first time, proposes a hierarchical self-attention-guided deep learning framework to predict NAC response in breast cancer patients using digital histopathological images of pre-treatment biopsy specimens. METHODS: Digitized hematoxylin and eosin-stained slides of BC core needle biopsies were obtained from 207 patients treated with NAC, followed by surgery. The response to NAC for each patient was determined using the standard clinical and pathological criteria after surgery. The digital pathology images were processed through the proposed hierarchical framework consisting of patch-level and tumor-level processing modules followed by a patient-level response prediction component. A combination of convolutional layers and transformer self-attention blocks were utilized in the patch-level processing architecture to generate optimized feature maps. The feature maps were analyzed through two vision transformer architectures adapted for the tumor-level processing and the patient-level response prediction components. The feature map sequences for these transformer architectures were defined based on the patch positions within the tumor beds and the bed positions within the biopsy slide, respectively. A five-fold cross-validation at the patient level was applied on the training set (144 patients with 9430 annotated tumor beds and 1,559,784 patches) to train the models and optimize the hyperparameters. An unseen independent test set (63 patients with 3574 annotated tumor beds and 173,637 patches) was used to evaluate the framework. RESULTS: The obtained results on the test set showed an AUC of 0.89 and an F1-score of 90% for predicting pCR to NAC a priori by the proposed hierarchical framework. Similar frameworks with the patch-level, patch-level + tumor-level, and patch-level + patient-level processing components resulted in AUCs of 0.79, 0.81, and 0.84 and F1-scores of 86%, 87%, and 89%, respectively. CONCLUSIONS: The results demonstrate a high potential of the proposed hierarchical deep-learning methodology for analyzing digital pathology images of pre-treatment tumor biopsies to predict the pathological response of breast cancer to NAC.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Mama/patologia , Biópsia , Resultado do Tratamento , Terapia Neoadjuvante/métodos , Estudos Retrospectivos
6.
Oncologist ; 28(12): 1020-1033, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37302801

RESUMO

BACKGROUND: Patients diagnosed with cancer are frequent users of the emergency department (ED). While many visits are unavoidable, a significant portion may be potentially preventable ED visits (PPEDs). Cancer treatments have greatly advanced, whereby patients may present with unique toxicities from targeted therapies and are often living longer with advanced disease. Prior work focused on patients undergoing cytotoxic chemotherapy, and often excluded those on supportive care alone. Other contributors to ED visits in oncology, such as patient-level variables, are less well-established. Finally, prior studies focused on ED diagnoses to describe trends and did not evaluate PPEDs. An updated systematic review was completed to focus on PPEDs, novel cancer therapies, and patient-level variables, including those on supportive care alone. METHODS: Three online databases were used. Included publications were in English, from 2012-2022, with sample sizes of ≥50, and reported predictors of ED presentation or ED diagnoses in oncology. RESULTS: 45 studies were included. Six studies highlighted PPEDs with variable definitions. Common reasons for ED visits included pain (66%) or chemotherapy toxicities (69.1%). PPEDs were most frequent amongst breast cancer patients (13.4%) or patients receiving cytotoxic chemotherapy (20%). Three manuscripts included immunotherapy agents, and only one focused on end-of-life patients. CONCLUSION: This updated systematic review highlights variability in oncology ED visits during the last decade. There is limited work on the concept of PPEDs, patient-level variables and patients on supportive care alone. Overall, pain and chemotherapy toxicities remain key drivers of ED visits in cancer patients. Further work is needed in this realm.


Assuntos
Serviço Hospitalar de Emergência , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Pacientes , Dor , Estudos Retrospectivos
7.
Breast Dis ; 42(1): 59-66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911927

RESUMO

OBJECTIVES: Early diagnosis of triple-negative (TN) and human epidermal growth factor receptor 2 positive (HER2+) breast cancer is important due to its increased risk of micrometastatic spread necessitating early treatment and for guiding targeted therapies. This study aimed to evaluate the diagnostic performance of machine learning (ML) classification of newly diagnosed breast masses into TN versus non-TN (NTN) and HER2+ versus HER2 negative (HER2-) breast cancer, using radiomic features extracted from grayscale ultrasound (US) b-mode images. MATERIALS AND METHODS: A retrospective chart review identified 88 female patients who underwent diagnostic breast US imaging, had confirmation of invasive malignancy on pathology and receptor status determined on immunohistochemistry available. The patients were classified as TN, NTN, HER2+ or HER2- for ground-truth labelling. For image analysis, breast masses were manually segmented by a breast radiologist. Radiomic features were extracted per image and used for predictive modelling. Supervised ML classifiers included: logistic regression, k-nearest neighbour, and Naïve Bayes. Classification performance measures were calculated on an independent (unseen) test set. The area under the receiver operating characteristic curve (AUC), sensitivity (%), and specificity (%) were reported for each classifier. RESULTS: The logistic regression classifier demonstrated the highest AUC: 0.824 (sensitivity: 81.8%, specificity: 74.2%) for the TN sub-group and 0.778 (sensitivity: 71.4%, specificity: 71.6%) for the HER2 sub-group. CONCLUSION: ML classifiers demonstrate high diagnostic accuracy in classifying TN versus NTN and HER2+ versus HER2- breast cancers using US images. Identification of more aggressive breast cancer subtypes early in the diagnostic process could help achieve better prognoses by prioritizing clinical referral and prompting adequate early treatment.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Ultrassonografia , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Projetos Piloto , Receptor ErbB-2/metabolismo , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Pessoa de Meia-Idade
8.
Cancers (Basel) ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291791

RESUMO

Despite the important role of preclinical experiments to characterize tumor biology and molecular pathways, there are ongoing challenges to model the tumor microenvironment, specifically the dynamic interactions between tumor cells and immune infiltrates. Comprehensive models of host-tumor immune interactions will enhance the development of emerging treatment strategies, such as immunotherapies. Although in vitro and murine models are important for the early modelling of cancer and treatment-response mechanisms, comparative research studies involving veterinary oncology may bridge the translational pathway to human studies. The natural progression of several malignancies in animals exhibits similar pathogenesis to human cancers, and previous studies have shown a relevant and evaluable immune system. Veterinary oncologists working alongside oncologists and cancer researchers have the potential to advance discovery. Understanding the host-tumor-immune interactions can accelerate drug and biomarker discovery in a clinically relevant setting. This review presents discoveries in comparative immuno-oncology and implications to cancer therapy.

9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4764-4767, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086360

RESUMO

Accurate segmentation of nuclei is an essential step in analysis of digital histology images for diagnostic and prognostic applications. Despite recent advances in automated frameworks for nuclei segmentation, this task is still challenging. Specifically, detecting small nuclei in large-scale histology images and delineating the border of touching nuclei accurately is a complicated task even for advanced deep neural networks. In this study, a cascaded deep learning framework is proposed to segment nuclei accurately in digitized microscopy images of histology slides. A U-Net based model with customized pixel-wised weighted loss function is adapted in the proposed framework, followed by a U-Net based model with VGG16 backbone and a soft Dice loss function. The model was pretrained on the Post-NAT-BRCA public dataset before training and independent evaluation on the MoNuSeg dataset. The cascaded model could outperform the other state-of-the-art models with an AJI of 0.72 and a F1-score of 0.83 on the MoNuSeg test set.


Assuntos
Aprendizado Profundo , Núcleo Celular/patologia , Técnicas Histológicas , Microscopia , Redes Neurais de Computação
10.
Curr Oncol ; 29(8): 5698-5701, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005187

RESUMO

Highly complex and multi-dimensional medical data containing clinical, radiologic, pathologic, and sociodemographic information have the potential to advance precision oncology [...].


Assuntos
Inteligência Artificial , Neoplasias , Detecção Precoce de Câncer , Humanos , Oncologia/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisão/métodos
11.
Sci Rep ; 12(1): 9690, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690630

RESUMO

Complete pathological response (pCR) to neoadjuvant chemotherapy (NAC) is a prognostic factor for breast cancer (BC) patients and is correlated with improved survival. However, pCR rates are variable to standard NAC, depending on BC subtype. This study investigates quantitative digital histopathology coupled with machine learning (ML) to predict NAC response a priori. Clinicopathologic data and digitized slides of BC core needle biopsies were collected from 149 patients treated with NAC. The nuclei within the tumor regions were segmented on the histology images of biopsy samples using a weighted U-Net model. Five pathomic feature subsets were extracted from segmented digitized samples, including the morphological, intensity-based, texture, graph-based and wavelet features. Seven ML experiments were conducted with different feature sets to develop a prediction model of therapy response using a gradient boosting machine with decision trees. The models were trained and optimized using a five-fold cross validation on the training data and evaluated using an unseen independent test set. The prediction model developed with the best clinical features (tumor size, tumor grade, age, and ER, PR, HER2 status) demonstrated an area under the ROC curve (AUC) of 0.73. Various pathomic feature subsets resulted in models with AUCs in the range of 0.67 and 0.87, with the best results associated with the graph-based and wavelet features. The selected features among all subsets of the pathomic and clinicopathologic features included four wavelet and three graph-based features and no clinical features. The predictive model developed with these features outperformed the other models, with an AUC of 0.90, a sensitivity of 85% and a specificity of 82% on the independent test set. The results demonstrated the potential of quantitative digital histopathology features integrated with ML methods in predicting BC response to NAC. This study is a step forward towards precision oncology for BC patients to potentially guide future therapies.


Assuntos
Neoplasias da Mama , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biópsia , Neoplasias da Mama/patologia , Feminino , Humanos , Aprendizado de Máquina , Terapia Neoadjuvante/métodos , Medicina de Precisão , Estudos Retrospectivos
12.
Breast Cancer Res Treat ; 193(1): 1-20, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35224713

RESUMO

PURPOSE: The neoadjuvant treatment of breast cancer (NABC) is a rapidly changing area that benefits from guidelines integrating evidence with expert consensus to help direct practice. This can optimize patient outcomes by ensuring the appropriate use of evolving neoadjuvant principles. METHODS: An expert panel formulated evidence-based practice recommendations spanning the entire neoadjuvant breast cancer treatment journey. These were sent for practice-based consensus across Canada using the modified Delphi methodology, through a secure online survey. Final recommendations were graded using the GRADE criteria for guidelines. The evidence was reviewed over the course of guideline development to ensure recommendations remained aligned with current relevant data. RESULTS: Response rate to the online survey was almost 30%; representation was achieved from various medical specialties from both community and academic centres in various Canadian provinces. Two rounds of consensus were required to achieve 80% or higher consensus on 59 final statements. Five additional statements were added to reflect updated evidence but not sent for consensus. CONCLUSIONS: Key highlights of this comprehensive Canadian guideline on NABC include the use of neoadjuvant therapy for early stage triple negative and HER2 positive breast cancer, with subsequent adjuvant treatments for patients with residual disease. The use of molecular signatures, other targeted adjuvant therapies, and optimal response-based local regional management remain actively evolving areas. Many statements had evolving or limited data but still achieved high consensus, demonstrating the utility of such a guideline in helping to unify practice while further evidence evolves in this important area of breast cancer management.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Adjuvantes Imunológicos , Neoplasias da Mama/tratamento farmacológico , Canadá , Consenso , Feminino , Humanos
13.
Curr Oncol ; 28(6): 4298-4316, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34898544

RESUMO

BACKGROUND: Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for grading tumors using artificial intelligence. METHODS: There were 138 patients included in this retrospective study. Breast core biopsy slides were prepared using standard laboratory techniques, digitized, and pre-processed for analysis. Deep convolutional neural networks (CNNs) were developed to identify the regions of interest containing malignant cells and to segment tumor nuclei. Imaging-based features associated with spatial parameters were extracted from the segmented regions of interest (ROIs). Clinical datasets and pathologic biomarkers (estrogen receptor, progesterone receptor, and human epidermal growth factor 2) were collected from all study subjects. Pathologic, clinical, and imaging-based features were input into machine learning (ML) models to classify histologic grade, and model performances were tested against ground-truth labels at the patient-level. Classification performances were evaluated using receiver-operating characteristic (ROC) analysis. RESULTS: Multiparametric feature sets, containing both clinical and imaging-based features, demonstrated high classification performance. Using imaging-derived markers alone, the classification performance demonstrated an area under the curve (AUC) of 0.745, while modeling these features with other pathologic biomarkers yielded an AUC of 0.836. CONCLUSION: These results demonstrate an association between tumor nuclear spatial features and tumor grade. If further validated, these systems may be implemented into pathology CADs and can assist pathologists to expeditiously grade tumors at the time of diagnosis and to help guide clinical decisions.


Assuntos
Neoplasias da Mama , Inteligência Artificial , Biomarcadores , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Redes Neurais de Computação , Estudos Retrospectivos
16.
Sci Rep ; 11(1): 8025, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850222

RESUMO

Breast cancer is currently the second most common cause of cancer-related death in women. Presently, the clinical benchmark in cancer diagnosis is tissue biopsy examination. However, the manual process of histopathological analysis is laborious, time-consuming, and limited by the quality of the specimen and the experience of the pathologist. This study's objective was to determine if deep convolutional neural networks can be trained, with transfer learning, on a set of histopathological images independent of breast tissue to segment tumor nuclei of the breast. Various deep convolutional neural networks were evaluated for the study, including U-Net, Mask R-CNN, and a novel network (GB U-Net). The networks were trained on a set of Hematoxylin and Eosin (H&E)-stained images of eight diverse types of tissues. GB U-Net demonstrated superior performance in segmenting sites of invasive diseases (AJI = 0.53, mAP = 0.39 & AJI = 0.54, mAP = 0.38), validated on two hold-out datasets exclusively containing breast tissue images of approximately 7,582 annotated cells. The results of the networks, trained on images independent of breast tissue, demonstrated that tumor nuclei of the breast could be accurately segmented.


Assuntos
Neoplasias da Mama , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos
17.
Sci Rep ; 11(1): 6117, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731738

RESUMO

To investigate the role of quantitative ultrasound (QUS) radiomics to predict treatment response in patients with head and neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). Five spectral parameters, 20 texture, and 80 texture-derivative features were extracted from the index lymph node before treatment. Response was assessed initially at 3 months with complete responders labelled as early responders (ER). Patients with residual disease were followed to classify them as either late responders (LR) or patients with persistent/progressive disease (PD). Machine learning classifiers with leave-one-out cross-validation was used for the development of a binary response-prediction radiomics model. A total of 59 patients were included in the study (22 ER, 29 LR, and 8 PD). A support vector machine (SVM) classifier led to the best performance with accuracy and area under curve (AUC) of 92% and 0.91, responsively to define the response at 3 months (ER vs. LR/PD). The 2-year recurrence-free survival for predicted-ER, LR, PD using an SVM-model was 91%, 78%, and 27%, respectively (p < 0.01). Pretreatment QUS-radiomics using texture derivatives in HNSCC can predict the response to RT with an accuracy of more than 90% with a strong influence on the survival.Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.


Assuntos
Neoplasias de Cabeça e Pescoço , Recidiva Local de Neoplasia , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Taxa de Sobrevida
18.
Breast Cancer Res Treat ; 186(2): 379-389, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33486639

RESUMO

PURPOSE: Neoadjuvant chemotherapy (NAC) is used to treat patients with high-risk breast cancer. The tumor response to NAC can be classified as either a pathological partial response (pPR) or pathological complete response (pCR), defined as complete eradication of invasive tumor cells, with a pCR conferring a significantly lower risk of recurrence. Predicting the response to NAC, however, remains a significant clinical challenge. The objective of this study was to determine if analysis of nuclear features on core biopsies using artificial intelligence (AI) can predict response to NAC. METHODS: Fifty-eight HER2-positive or triple-negative breast cancer patients were included in this study (pCR n = 37, pPR n = 21). Multiple deep convolutional neural networks were developed to automate tumor detection and nuclear segmentation. Nuclear count, area, and circularity, as well as image-based first- and second-order features including mean pixel intensity and correlation of the gray-level co-occurrence matrix (GLCM-COR) were determined. RESULTS: In univariate analysis, the pCR group had fewer multifocal/multicentric tumors, higher nuclear intensity, and lower GLCM-COR compared to the pPR group. In multivariate binary logistic regression, tumor multifocality/multicentricity (OR = 0.14, p = 0.012), nuclear intensity (OR = 1.23, p = 0.018), and GLCM-COR (OR = 0.96, p = 0.043) were each independently associated with likelihood of achieving a pCR, and the model was able to successful classify 79% of cases (62% for pPR and 89% for pCR). CONCLUSION: Analysis of tumor nuclear features using digital pathology/AI can significantly improve models to predict pathological response to NAC.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inteligência Artificial , Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quimioterapia Adjuvante , Feminino , Humanos , Recidiva Local de Neoplasia , Resultado do Tratamento
19.
JCO Clin Cancer Inform ; 5: 66-80, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439725

RESUMO

PURPOSE: Neoadjuvant chemotherapy (NAC) is used to treat locally advanced breast cancer (LABC) and high-risk early breast cancer (BC). Pathological complete response (pCR) has prognostic value depending on BC subtype. Rates of pCR, however, can be variable. Predictive modeling is desirable to help identify patients early who may have suboptimal NAC response. Here, we test and compare the predictive performances of machine learning (ML) prediction models to a standard statistical model, using clinical and pathological data. METHODS: Clinical and pathological variables were collected in 431 patients, including tumor size, patient demographics, histological characteristics, molecular status, and staging information. A standard multivariable logistic regression (MLR) was developed and compared with five ML models: k-nearest neighbor classifier, random forest (RF) classifier, naive Bayes algorithm, support vector machine, and multilayer perceptron model. Model performances were measured using a receiver operating characteristic (ROC) analysis and statistically compared. RESULTS: MLR predictors of NAC response included: estrogen receptor (ER) status, human epidermal growth factor-2 (HER2) status, tumor size, and Nottingham grade. The strongest MLR predictors of pCR included HER2+ versus HER2- BC (odds ratio [OR], 0.13; 95% CI, 0.07 to 0.23; P < .001) and Nottingham grade G3 versus G1-2 (G1-2: OR, 0.36; 95% CI, 0.20 to 0.65; P < .001). The area under the curve (AUC) for the MLR was AUC = 0.64. Among the various ML models, an RF classifier performed best, with an AUC = 0.88, sensitivity of 70.7%, and specificity of 84.6%, and included the following variables: menopausal status, ER status, HER2 status, Nottingham grade, tumor size, nodal status, and presence of inflammatory BC. CONCLUSION: Modeling performances varied between standard versus ML classification methods. RF ML classifiers demonstrated the best predictive performance among all models.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Terapia Neoadjuvante , Teorema de Bayes , Mama , Neoplasias da Mama/terapia , Feminino , Humanos
20.
Cancer Med ; 10(8): 2579-2589, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314716

RESUMO

This prospective study was conducted to investigate the role of quantitative ultrasound (QUS) radiomics in predicting recurrence for patients with node-positive head-neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). The most prominent cervical lymph node (LN) was scanned with a clinical ultrasound device having central frequency of 6.5 MHz. Ultrasound radiofrequency data were processed to obtain 7 QUS parameters. Color-coded parametric maps were generated based on individual QUS spectral features corresponding to each of the smaller units. A total of 31 (7 primary QUS and 24 texture) features were obtained before treatment. All patients were treated with radical RT and followed according to standard institutional practice. Recurrence (local, regional, or distant) served as an endpoint. Three different machine learning classifiers with a set of maximally three features were used for model development and tested with leave-one-out cross-validation for nonrecurrence and recurrence groups. Fifty-one patients were included, with a median follow up of 38 months (range 7-64 months). Recurrence was observed in 17 patients. The best results were obtained using a k-nearest neighbor (KNN) classifier with a sensitivity, specificity, accuracy, and an area under curve of 76%, 71%, 75%, and 0.74, respectively. All the three features selected for the KNN model were texture features. The KNN-model-predicted 3-year recurrence-free survival was 81% and 40% in the predicted no-recurrence and predicted-recurrence groups, respectively. (p = 0.001). The pilot study demonstrates pretreatment QUS-radiomics can predict the recurrence group with an accuracy of 75% in patients with node-positive HNSCC. Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Ultrassonografia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estudos Prospectivos , Curva ROC , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...