Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Drug Deliv ; 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36545742

RESUMO

BACKGROUND: Rosuvastatin, most commonly used in the form of calcium salt, belongs to the statin groups of synthetic antihyperlipidemic agents. Rosuvastatin possesses high permeability, however, its aqueous solubility is poor, causing a slow dissolution rate in water. Consequently, this dissolution rate has a decisive role in the release and absorption of rosuvastatin in the gastrointestinal tube. OBJECTIVE: The aims of this study were to evaluate the absorption of the drug from the self-nano emulsifying drug delivery system of rosuvastatin (Ros SNEDDS) compared to rosuvastatin substance and to develop a level-A in vitro-in vivo correlation (IVIVC) for Ros SNEDDS. METHOD: An in-house developed LC-MS/MS method was used to determine the concentrations of rosuvastatin in dog plasma. Six beagle dogs received an intravenous dose, Ros SNEDDS, rosuvastatin substance. In vitro dissolution of the Ros SNEDDS was carried out with different conditions. Correlation models were developed from the dissolution and absorption results of Ros SNEDDS. RESULTS: The results showed a 1.7-fold enhanced oral bioavailability and 2.1-time increase of rosuvastatin Cmax in Ros SNEDDS form, compared to the rosuvastatin substance. A 900 ml dissolution medium of pH of 6.6 has demonstrated its suitability, the in vitro dissolution model was studied and supported by the Weibull equation with a weighting factor of 1/y2 as it presented the lowest values of AIC. CONCLUSION: Ros SNEDDS demonstrated higher bioavailability of rosuvastatin in comparison to rosuvastatin substance and established a level A IVIVC used in future bioequivalence trials.

2.
Stem Cell Reports ; 17(1): 53-67, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34919813

RESUMO

Reprogramming of murine female somatic cells to induced pluripotent stem cells (iPSCs) is accompanied by X chromosome reactivation (XCR), by which the inactive X chromosome (Xi) in female somatic cells becomes reactivated. However, how Xi initiates reactivation during reprogramming remains poorly defined. Here, we used a Sendai virus-based reprogramming system to generate partially reprogrammed iPSCs that appear to be undergoing the initial phase of XCR. Allele-specific RNA-seq of these iPSCs revealed that XCR initiates at a subset of genes clustered near the centromere region. The initial phase of XCR occurs when the cells transit through mesenchymal-epithelial transition (MET) before complete shutoff of Xist expression. Moreover, regulatory regions of these genes display dynamic changes in lysine-demethylase 1a (KDM1A) occupancy. Our results identified clustered genes on the Xi that show reactivation in the initial phase of XCR during reprogramming and suggest a possible role for histone demethylation in this process.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Família Multigênica , Ativação Transcricional , Inativação do Cromossomo X/genética , Alelos , Animais , Biomarcadores , Técnicas de Reprogramação Celular , Fibroblastos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Histona Desmetilases , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Célula Única , Transcriptoma
3.
Stem Cell Res ; 23: 13-19, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28666145

RESUMO

Transgene-free induced pluripotent stem cells (iPSCs) are valuable for both basic research and potential clinical applications. We previously reported that a replication-defective and persistent Sendai virus (SeVdp) vector harboring four reprogramming factors (SeVdp-iPS) can efficiently induce generation of transgene-free iPSCs. This vector can express all four factors stably and simultaneously without chromosomal integration and can be eliminated completely from reprogrammed cells by suppressing vector-derived RNA-dependent RNA polymerase. Here, we describe an improved SeVdp-iPS vector (SeVdp(KOSM)302L) that is automatically erased in response to microRNA-302 (miR-302), uniquely expressed in pluripotent stem cells (PSCs). Gene expression and genome replication of the SeVdp-302L vector, which contains miRNA-302a target sequences at the 3' untranslated region of L mRNA, are strongly suppressed in PSCs. Consequently, SeVdp(KOSM)302L induces expression of reprogramming factors in somatic cells, while it is automatically erased from cells successfully reprogrammed to express miR-302. As this vector can reprogram somatic cells into transgene-free iPSCs without the aid of exogenous short interfering RNA (siRNA), the results we present here demonstrate that this vector may become an invaluable tool for the generation of human iPSCs for future clinical applications.


Assuntos
Técnicas de Cultura de Células/métodos , Vetores Genéticos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Vírus Sendai/genética , Transgenes , Animais , Sequência de Bases , Regulação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética
4.
Stem Cell Reports ; 8(3): 787-801, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28262547

RESUMO

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is accompanied by morphological, functional, and metabolic alterations before acquisition of full pluripotency. Although the genome-wide effects of the reprogramming factors on gene expression are well documented, precise mechanisms by which gene expression changes evoke phenotypic responses remain to be determined. We used a Sendai virus-based system that permits reprogramming to progress in a strictly KLF4-dependent manner to screen for KLF4 target genes that are critical for the progression of reprogramming. The screening identified Tcl1 as a critical target gene that directs the metabolic shift from oxidative phosphorylation to glycolysis. KLF4-induced TCL1 employs a two-pronged mechanism, whereby TCL1 activates AKT to enhance glycolysis and counteracts PnPase to diminish oxidative phosphorylation. These regulatory mechanisms described here highlight a central role for a reprogramming factor in orchestrating the metabolic shift toward the acquisition of pluripotency during iPSC generation.


Assuntos
Reprogramação Celular , Metabolismo Energético , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Reprogramação Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Biol Pharm Bull ; 39(6): 935-45, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26983907

RESUMO

Among mitotic kinases, Aurora kinases are the most widely studied, since their expression is restricted to mitosis. They play a key role in chromosome segregation and cell polyploidy. Aurora kinases are important therapeutic targets, and several research groups have directed their efforts toward the identification of kinase inhibitors. The aim of this study is to screen and characterize Aurora kinase inhibitors from natural substances extracted from plants that are used in the Vietnamese pharmacopoeia. We have characterized in vitro Derrone, extracted from Erythrina orientalis L. MURR, as a novel Aurora kinase inhibitor. This compound exhibited an ability to inhibit the phosphorylation of histone H3 at ser10 both in kinase assay and at the cellular level. The compound was more effective against Aurora kinase B, with a lower IC50 value as compared to Aurora A. Moreover, it impaired the mitotic spindle checkpoint and led to endoreduplication in cancer cells, a phenomenon caused by an Aurora B inhibitor. Interestingly, using the xCelligence system and real-time cell analysis (RTCA) software, we set up a comparison of cell proliferation profiles between cancer cells treated with Derrone and VX680-a well-known Aurora kinase inhibitor-and we found that these profiles exhibited considerable similarity in cell morphology, growth, and death. Additionally, Derrone significantly inhibited the formation and growth of MCF7 tumor spheroids.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Flavonoides/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Histonas/metabolismo , Humanos , Mitose/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...