Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893443

RESUMO

Although disubstituted imidazolium cation is sterically crowded, hundreds of ionic liquids based on this cation have been reported as electrolytes for energy storage devices. In contrast to disubstituted imidazolium, non-substituted imidazolium is uncrowded sterically and has not yet been investigated as an electrolyte, to the best of our knowledge. Hence, imidazolium hydrogen sulfate [Imi][HSO4], in mixture with water, was studied as an electrolyte for PANI-based electrode materials. For comparison, pyrrolidinium with hydrogen sulfate or p-toluene sulfonate ([Pyrr][HSO4] or [Pyrr][PTS]), in mixture with water, were also investigated as alternatives to the conventional electrolyte (i.e., aqueous H2SO4) for PANI electrodes. Walden plots of binary mixture ionic liquid-water weight ratios with the optimal ionic conductivity (i.e., [Imi][HSO4]/water 48/52 wt% (195.1 mS/cm), [Pyrr][HSO4]/water 41/59 wt% (186.6 mS/cm), and [Pyrr][PTS]/water 48/52 wt% (43.4 mS/cm) along with the electrochemical performances of PANI in these binary mixtures showed that [Pyrr][HSO4]aq or [Imi][HSO4]aq are convenient electrolytes for PANI/PIL, as opposed to [Pyrr][PTS]aq. Furthermore, replacing the conventional aqueous electrolyte H2SO4 with [Imi][HSO4] aq increased the specific capacitance of PANI/PIL from 249.8 to 268.5 F/g at 15 mV/s. Moreover, PANI/PIL electrodes displayed a quasi-ideal capacitive behavior in [Imi][HSO4]aq (the correction factor of CPE4 was 0.99). This primary study has shown that non-substituted imidazolium as an electrolyte could enhance the electrochemical performances of PANI electrodes and could be a good alternative to the conventional electrolyte.

2.
Materials (Basel) ; 15(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431477

RESUMO

Donor−acceptor (D−A) small molecules are regarded as promising hole-transporting materials for perovskite solar cells (PSCs) due to their tunable optoelectronic properties. This paper reports the design, synthesis and characterization of three novel isomeric D-π-A small molecules PY1, PY2 and PY3. The chemical structures of the molecules consist of a pyrazolo[1,5-a]pyrimidine acceptor core functionalized with one 3,6-bis(4,4'-dimethoxydiphenylamino)carbazole (3,6-CzDMPA) donor moiety via a phenyl π-spacer at the 3, 5 and 7 positions, respectively. The isolated compounds possess suitable energy levels, sufficient thermal stability (Td > 400 °C), molecular glass behavior with Tg values in the range of 127−136 °C slightly higher than that of the reference material Spiro-OMeTAD (126 °C) and acceptable hydrophobicity. Undoped PY1 demonstrates the highest hole mobility (3 × 10−6 cm2 V−1 s−1) compared to PY2 and PY3 (1.3 × 10−6 cm2 V−1 s−1). The whole isomers were incorporated as doped HTMs in planar n-i-p PSCs based on double cation perovskite FA0.85Cs0.15Pb(I0.85Br0.15)3. The non-optimized device fabricated using PY1 exhibited a power conversion efficiency (PCE) of 12.41%, similar to that obtained using the reference, Spiro-OMeTAD, which demonstrated a maximum PCE of 12.58% under the same conditions. The PY2 and PY3 materials demonstrated slightly lower performance in device configuration, with relatively moderate PCEs of 10.21% and 10.82%, respectively, and slight hysteresis behavior (−0.01 and 0.02). The preliminary stability testing of PSCs is also described. The PY1-based device exhibited better stability than the device using Spiro-OMeTAD, which could be related to its slightly superior hydrophobic character preventing water diffusion into the perovskite layer.

3.
Materials (Basel) ; 14(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361468

RESUMO

Polyaniline (PANI) was synthesized using oxidative polymerization in a mixture of water with pyrrolidinium hydrogen sulfate [Pyrr][HSO4], which is a protic ionic liquid PIL. The obtained PANI (PANI/PIL) was compared with conventional PANI (PANI/HCl and PANI/HSO4) in terms of their morphological, structural, and storage properties. The results demonstrate that the addition of this PIL to a polymerization medium leads to a fiber-like morphology, instead of a spherical-like morphology, of PANI/HSO4 or an agglomerated morphology of PANI/HCl. In addition, PAN/PIL exhibits an improvement of the charge transfer kinetic and storage capability in H2SO4 1 mol·L-1, compared to PANI/HCl. The combination of PANI/PIL and graphene oxide (GO), on the other hand, was investigated by optimizing the PANI/GO weight ratio to achieve the nanocomposite material with the best performance. Our results indicate that the PANI/PIL/GO containing 16 wt% of GO material exhibits a high performance and stability (223 F·g-1 at 10 A·g-1 in H2SO4 1 mol·L-1, 4.9 Wh·Kg-1, and 3700 W·Kg-1 @ 10 A·g-1). The obtained results highlight the beneficial role of PIL in building PANI and PANI/GO nanocomposites with excellent performances for supercapacitor applications.

4.
Materials (Basel) ; 11(8)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082594

RESUMO

The present study reports on the use of three types of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles with various organic substituents as fillers in a fluoroelastomer (FKM). A series of/POSS elastomer composite thin films is prepared. Microstructural SEM/TEM (scanning electron microscopy/transmission electron microscopy) imaging reveals a dispersion state allowing the presence of micron-sized domains. The influence of POSS content is studied in order to optimize thermal stability and mechanical properties of the composite thin films. Both POSS-A (with an acryloyl functional group and seven isobutyl substituents) and POSS-P (with eight phenyl substituents) lead to higher thermal stability and modulus of the composites, with respect to the unfilled FKM terpolymer matrix. covalent grafting of POSS-A onto the FKM network is found to play a critical role. Enhanced storage modulus in the rubbery plateau region (+210% at 200 °C for 20 phr) suggests that POSS-A is particularly suitable for high temperature applications.

5.
Nanoscale Res Lett ; 7(1): 375, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22776559

RESUMO

In this article, the physico-chemical and electrochemical conditions of through-silicon via formation were studied. First, macropore arrays were etched through a low doped n-type silicon wafer by anodization under illumination into a hydrofluoric acid-based electrolyte. After electrochemical etching, 'almost' through-silicon macropores were locally opened by a backside photolithographic process followed by anisotropic etching. The 450 × 450-µm² opened areas were then selectively filled with copper by a potentiostatic electrochemical deposition. Using this process, high density conductive via (4.5 × 105 cm-²) was carried out. The conductive paths were then electrically characterized, and a resistance equal to 32 mΩ/copper-filled macropore was determined.

6.
Nanoscale Res Lett ; 7(1): 344, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22734507

RESUMO

The study of an innovative fluoropolymer masking layer for silicon anodization is proposed. Due to its high chemical resistance to hydrofluoric acid even under anodic bias, this thin film deposited by plasma has allowed the formation of deep porous silicon regions patterned on the silicon wafer. Unlike most of other masks, fluoropolymer removal after electrochemical etching is rapid and does not alter the porous layer. Local porous regions were thus fabricated both in p+-type and low-doped n-type silicon substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...