Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 3(5)2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23093388

RESUMO

The CsrRS two-component regulatory system of group A Streptococcus (GAS; Streptococcus pyogenes) responds to subinhibitory concentrations of the human antimicrobial peptide LL-37. LL-37 signaling through CsrRS results in upregulation of genes that direct synthesis of virulence factors, including the hyaluronic acid capsule and streptolysin O (SLO). Here, we demonstrate that a consequence of this response is augmented GAS resistance to killing by human oropharyngeal keratinocytes, neutrophils, and macrophages. LL-37-induced upregulation of SLO and hyaluronic acid capsule significantly reduced internalization of GAS by keratinocytes and phagocytic killing by neutrophils and macrophages. Because vitamin D induces LL-37 production by macrophages, we tested its effect on macrophage killing of GAS. In contrast to the reported enhancement of macrophage function in relation to other pathogens, treatment of macrophages with 1α,25-dihydroxy-vitamin D3 paradoxically reduced the ability of macrophages to control GAS infection. These observations demonstrate that LL-37 signals through CsrRS to induce a virulence phenotype in GAS characterized by heightened resistance to ingestion and killing by both epithelial cells and phagocytes. By inducing LL-37 production in macrophages, vitamin D may contribute to this paradoxical exacerbation of GAS infection. IMPORTANCE It remains poorly understood why group A Streptococcus (GAS) causes asymptomatic colonization or localized throat inflammation in most individuals but rarely progresses to invasive infection. The human antimicrobial peptide LL-37, which is produced as part of the innate immune response to GAS infection, signals through the GAS CsrRS two-component regulatory system to upregulate expression of multiple virulence factors. This study reports that two CsrRS-regulated GAS virulence factors-streptolysin O and the hyaluronic acid capsule-are critical in LL-37-induced resistance of GAS to killing by human throat epithelial cells and by neutrophils and macrophages. Vitamin D, which increases LL-37 production in macrophages, has the paradoxical effect of increasing GAS resistance to macrophage-mediated killing. In this way, the human innate immune response may promote the transition from GAS colonization to invasive infection.


Assuntos
Catelicidinas/farmacologia , Streptococcus pyogenes/efeitos dos fármacos , Vitamina D/farmacologia , Peptídeos Catiônicos Antimicrobianos , Linhagem Celular , Humanos , Queratinócitos/microbiologia , Macrófagos/microbiologia , Neutrófilos/microbiologia
2.
PLoS Pathog ; 7(10): e1002361, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22046138

RESUMO

The CsrRS (or CovRS) two component system controls expression of up to 15% of the genome of group A Streptococcus (GAS). While some studies have suggested that the sensor histidine kinase CsrS responds to membrane perturbations as a result of various environmental stresses, other data have implicated the human antimicrobial peptide LL-37 and extracellular Mg(2+) as specific signals. We now report that Mg(2+) and LL-37 have opposite effects on expression of multiple genes that are activated or repressed by the transcriptional regulator CsrR. Using a GAS isolate representative of the recently emerged and widely disseminated M1T1 clone implicated in severe invasive disease, we found marked up-regulation by CsrRS of multiple virulence factors including pyrogenic exotoxin A, DNase Sda1, streptolysin O, and the hyaluronic acid capsular polysaccharide, among others. Topology and surface protein labeling studies indicated that CsrS is associated with the bacterial cell membrane and has a surface-exposed extracellular domain accessible to environmental ligands. Replacement of a cluster of three acidic amino acids with uncharged residues in the extracellular domain of CsrS abrogated LL-37 signaling and conferred a hyporesponsive phenotype consistent with tonic activation of CsrS autokinase activity, an effect that could be overridden by mutation of the CsrS active site histidine. Both loss- and gain-of-function mutations of a conserved site in the receiver domain of CsrR established an essential role for lysine 102 in CsrS-to-CsrR signal transduction. These results provide strong evidence that Mg(2+) and LL-37 are specific signals that function by altering CsrS autokinase activity and downstream phosphotransfer to CsrR to modulate its activity as a transcriptional regulator. The representation of multiple antiphagocytic and cytotoxic factors in the CsrRS regulon together with results of in vitro phagocytic killing assays support the hypothesis that CsrRS mediates conversion of GAS from a colonizing to an invasive phenotype in response to signaling by host LL-37.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Fenótipo , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Fatores de Virulência , Catelicidinas
3.
Proc Natl Acad Sci U S A ; 105(43): 16755-60, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18936485

RESUMO

Group A streptococci (Streptococcus pyogenes or GAS) freshly isolated from individuals with streptococcal sore throat or invasive ("flesh-eating") infection often grow as mucoid colonies on primary culture but lose this colony appearance after laboratory passage. The mucoid phenotype is due to abundant production of the hyaluronic acid capsular polysaccharide, a key virulence determinant associated with severe GAS infections. These observations suggest that signal(s) from the human host trigger increased production of capsule and perhaps other virulence factors during infection. Here we show that subinhibitory concentrations of the human antimicrobial cathelicidin peptide LL-37 stimulate expression of the GAS capsule synthesis operon (hasABC). Up-regulation is mediated by the CsrRS 2-component regulatory system: it requires a functional CsrS sensor protein and can be antagonized by increased extracellular Mg(2+), the other identified environmental signal for CsrS. Up-regulation was also evident for other CsrRS-regulated virulence genes, including the IL-8 protease PrtS/ScpC and the integrin-like/IgG protease Mac/IdeS, findings that suggest a coordinated GAS virulence response elicited by this antimicrobial immune effector peptide. LL-37 signaling through CsrRS led to a marked increase in GAS resistance to opsonophagocytic killing by human leukocytes, an in vitro measure of enhanced GAS virulence, consistent with increased expression of the antiphagocytic capsular polysaccharide and Mac/IdeS. We propose that the human cathelicidin LL-37 has the paradoxical effect of stimulating CsrRS-regulated virulence gene expression, thereby enhancing GAS pathogenicity during infection. The ability of GAS to sense and respond to LL-37 may explain, at least in part, the unique susceptibility of the human species to streptococcal infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/fisiologia , Streptococcus pyogenes/patogenicidade , Cápsulas Bacterianas/genética , Catelicidinas , Células Cultivadas , Suscetibilidade a Doenças , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos/imunologia , Leucócitos/microbiologia , Dados de Sequência Molecular , Óperon , Fagocitose/imunologia , Infecções Estreptocócicas/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...