Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38836454

RESUMO

In this study, we performed a numerical investigation of the thermophysical properties of liquid (U, Zr) mixtures, which are particularly relevant in the context of hypothetical nuclear accidents and the formation of in-vessel coriums. To do so, atomistic simulations leveraging classical molecular dynamics and an interatomic potential developed for solid (U, Zr) structures are performed. Our methodology is first validated by comparing the predictions of our model for the melting temperature and the structure factors to experimental, phase diagram, and ab initio data. We then use the approach to evaluate the temperature and composition dependence of four fundamental properties in the context of coriums: density, heat capacity, compressibility, and viscosity. Systematic comparisons to the existing experimental data are performed and discussed. In particular, the viscosity of liquid (U, Zr) mixtures is investigated by comparing diffusion calculations and the Stokes-Einstein formula as well as the results obtained with the Green-Kubo methodology, empirical predictions, and experimental data. Notably, the viscosity of the mixtures is predicted to be significantly higher than that of the single-element liquids, which is unexpected and could have crucial consequences on the early stages of the formation and flow of in-vessel corium.

2.
J Chem Phys ; 158(11): 114101, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948804

RESUMO

Tungsten (W) is a material of choice for the divertor material due to its high melting temperature, thermal conductivity, and sputtering threshold. However, W has a very high brittle-to-ductile transition temperature, and at fusion reactor temperatures (≥1000 K), it may undergo recrystallization and grain growth. Dispersion-strengthening W with zirconium carbide (ZrC) can improve ductility and limit grain growth, but much of the effects of the dispersoids on microstructural evolution and thermomechanical properties at high temperatures are still unknown. We present a machine learned Spectral Neighbor Analysis Potential for W-ZrC that can now be used to study these materials. In order to construct a potential suitable for large-scale atomistic simulations at fusion reactor temperatures, it is necessary to train on ab initio data generated for a diverse set of structures, chemical environments, and temperatures. Further accuracy and stability tests of the potential were achieved using objective functions for both material properties and high temperature stability. Validation of lattice parameters, surface energies, bulk moduli, and thermal expansion is confirmed on the optimized potential. Tensile tests of W/ZrC bicrystals show that although the W(110)-ZrC(111) C-terminated bicrystal has the highest ultimate tensile strength (UTS) at room temperature, observed strength decreases with increasing temperature. At 2500 K, the terminating C layer diffuses into the W, resulting in a weaker W-Zr interface. Meanwhile, the W(110)-ZrC(111) Zr-terminated bicrystal has the highest UTS at 2500 K.

3.
J Phys Condens Matter ; 32(34): 345901, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32316000

RESUMO

Efficient algorithms for the calculation of minimum energy paths of magnetic transitions are implemented within the geodesic nudged elastic band (GNEB) approach. While an objective function is not available for GNEB and a traditional line search can, therefore, not be performed, the use of limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) and conjugate gradient algorithms in conjunction with orthogonal spin optimization (OSO) approach is shown to greatly outperform the previously used velocity projection and dissipative Landau-Lifschitz dynamics optimization methods. The implementation makes use of energy weighted springs for the distribution of the discretization points along the path and this is found to improve performance significantly. The various methods are applied to several test problems using a Heisenberg-type Hamiltonian, extended in some cases to include Dzyaloshinskii-Moriya and exchange interactions beyond nearest neighbours. Minimum energy paths are found for magnetization reversals in a nano-island, collapse of skyrmions in two-dimensional layers and annihilation of a chiral bobber near the surface of a three-dimensional magnet. The LBFGS-OSO method is found to outperform the dynamics based approaches by up to a factor of 8 in some cases.

4.
Nat Mater ; 19(5): 576, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31719690

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Mater ; 19(4): 386-390, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31685944

RESUMO

Chirality, a foundational concept throughout science, may arise at ferromagnetic domain walls1 and in related objects such as skyrmions2. However, chiral textures should also exist in other types of ferroic materials, such as antiferromagnets, for which theory predicts that they should move faster for lower power3, and ferroelectrics, where they should be extremely small and possess unusual topologies4,5. Here, we report the concomitant observation of antiferromagnetic and electric chiral textures at domain walls in the room-temperature ferroelectric antiferromagnet BiFeO3. Combining reciprocal and real-space characterization techniques, we reveal the presence of periodic chiral antiferromagnetic objects along the domain walls as well as a priori energetically unfavourable chiral ferroelectric domain walls. We discuss the mechanisms underlying their formation and their relevance for electrically controlled topological oxide electronics and spintronics.

6.
Pediatr Radiol ; 27(4): 299-304, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9094233

RESUMO

BACKGROUND: Stereotactic radiosurgery allows for a high dose of focused radiation to be delivered to a small lesion such as an arteriovenous malformation (AVM). The clinical change and brain response over time to this localized high-dose radiation can be quite striking. OBJECTIVE: The objective of this study to describe and analyse the imaging changes following radiotherapy for AVMs. MATERIALS AND METHODS: The clinical presentation and the imaging changes following radiotherapy in two patients were studied over the course of 1-2 years. RESULTS: The imaging findings include diffuse low attenuation and contrast enhancement on CT. High-signal lesions were apparent on T2-weighted MR images with prominent contrast enhancement on T1-weighted images. Ring enhancement occurred over time. While new changes appeared over 12 months, these changes diminished during the second year. CONCLUSION: Radiotherapy induces inflammatory changes that are generally reversible but can lead to parenchymal destruction. These imaging changes are often nonspecific and therefore must be interpreted in light of clinical symptomatology and the time course since treatment. These patients should receive routine MR imaging within 3 months after radiosurgery with follow-up imaging at 6, 12, and 18 months.


Assuntos
Malformações Arteriovenosas Intracranianas/diagnóstico , Malformações Arteriovenosas Intracranianas/cirurgia , Radiocirurgia , Encéfalo/patologia , Angiografia Cerebral , Criança , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Fatores de Tempo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...