Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 194(Pt B): 115338, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516094

RESUMO

Potentially toxic elements (PTEs) presence in marine sediments can significantly affect the environmental quality and negatively influence economy and recreational activities in related areas. Accordingly, contamination monitoring and control in the marine environment is a fundamental task. In this work, four PTEs behavior (i.e. As, Hg, Pb, and Zn) in sandy foreshore sediments (SFSs) was thoroughly investigated at different pH, redox potential and temperature conditions of the marine water. For all the tests, the released As was 2.7-6 times higher than its initial concentration in water. Nonetheless, final mass balances showed that preferential release in the liquid phase occurred for Pb and Hg (up to 10 % and 9.1 %, respectively). Moreover, final Zn and Hg content increase in SFSs labile fractions indicated their higher bioavailability after the tests. The obtained results outline an approach useful to predict the contaminants behavior in marine matrices and support environmental monitoring and preservation strategies.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Poluentes Químicos da Água , Metais Pesados/análise , Chumbo , Poluentes do Solo/análise , Medição de Risco/métodos , Monitoramento Ambiental/métodos , Água , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química
2.
J Environ Qual ; 52(3): 584-595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36527733

RESUMO

Phosphorus (P) is an essential element to produce feed and fertilizers but also a nonrenewable resource. Both the predicted exhaustion of phosphatic rocks and the risk of eutrophication lead to an increasing necessity for P recovery methodologies to be applied in municipal wastewater treatment plants (WWTPs). One of the most promising solutions involves the precipitation of P-based minerals reusable as slow-release fertilizers. In this study, P recovery as struvite and hydroxyapatite from a municipal WWTP digestate liquid fraction (centrate) was investigated at varying pH (8-10), reagent typologies (MgCl2 , NaOH, Ca(OH)2 , and CaCl2 ), and concentrations under limiting magnesium doses through liquid- and solid-phase analyses and thermodynamical modeling. A maximum P recovery of 87.3% was achieved at pH 9 by adding NaOH and MgCl2 at a dose of 656 mg/L (the higher tested). According to these data, it was estimated that 92.0 tons/year of struvite and 33.2 tons/year of hydroxyapatite could be recovered from the WWTP centrate with a cost for reagent consumption being almost 50% of the mean P market value. An increase in P precipitation was observed while comparing experiments with the same pH values but with a higher Mg2+ dose. Ca2+ addition led to extensive P precipitation but mainly as amorphous phases that interfere with struvite formation.


Assuntos
Fósforo , Esgotos , Estruvita , Magnésio , Compostos de Magnésio , Durapatita , Fertilizantes , Hidróxido de Sódio , Fosfatos
3.
Environ Res ; 216(Pt 1): 114466, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228686

RESUMO

A new environmental problem is represented by the huge transformation of plastic waste released into the environment into small fragments, the so called micro- and nano-plastics, due to atmospheric phenomena. The smaller the size of the plastic fragments, the more their spreading into environmental compartments. The aim of this study is to test encapsulation into asphalt mastics of waste plastic material (WPM) as sustainable strategy to obtain road flexible pavements and to evaluate the potential release in water of micro and nano plastics. A new mastic mixing method was developed to blend the WPM with the bitumen contained into a bitumen emulsion (BE60/40) by adopting low mixing temperatures. Three different WPM contents, equal to 5, 10 and 20% by the weight of the bitumen contained in the BE60/40, were adopted to produce the mastics; the mastics' rheological properties, obtained by frequency sweep and multiple stress creep and recovery tests, were compared to those of a traditional asphalt mastic containing limestone filler. The aging of asphalt mastics was analyzed by soaking them in water and gradually lowering and raising temperature between -10 and 60 °C at predefined intervals. The addition of WPM improved greatly the asphalt mastic performance; in particular, for a WPM content of 10%, the rheological response in terms of stiffness remained unchanged after the mastic underwent thermal excursions in water. Encapsulation of micro and nano plastics into mastics reduced of more than 99% their potential water release.


Assuntos
Hidrocarbonetos , Microplásticos , Carbonato de Cálcio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...