Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093275

RESUMO

Relay communication, in which the relay forwards the signal received by a source to a destination, has a massive consideration in research, due to its ability to expand the coverage, increase the capacity, and reduce the power consumption. In this paper, we proposed and investigated energy harvesting (EH) based two-way half-duplex (TWHD) relaying sensors network using selection combining (SC) over block Rayleigh fading channel. In this model, we proposed the direct link between two sources for improving the system performance. For the system performance analysis, we investigated and derived the closed-form of the exact and upper bound Ergodic capacity (EC) and the exact form of the symbol error ratio (SER). By using the Monte Carlo simulation, the correctness of the research results is verified in the influence of the main system parameters. From the discussions, we can see that the analytical and simulation agree well with each other.

2.
J Nanosci Nanotechnol ; 12(4): 3301-4, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849111

RESUMO

The demonstrated Först-type resonance energy transfer (FRET) is demonstrated in quasi-solid type dye-sensitized solar cells between organic fluorescence materials as an energy donor doped in polymeric gel electrolyte and a ruthenium complex as an energy acceptor on the surface of TiO2. Strong spectral overlap of emission/absorption of the energy donor and acceptor is required to obtain high FRET efficiency. The judicious choice of the energy donor allows the enhancement of the light harvesting characters of the energy acceptor (N3) in quasi-solid dye sensitized solar cells which increases the power conversion efficiency by 25% compare to that of a pristine cell. The optimized cell architecture fabricated with the quasi-solid type electrolyte containing fluorescence materials shows a maximum efficiency of 5.08% with a short-circuit current density (J(sc)) of 12.63 mA/cm2, and an open-circuit voltage (V(oc)) of 0.70 V under illumination of simulated solar light (AM 1.5, 100 mW/cm2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...