Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 38(6): 721-732, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38031885

RESUMO

A commercial bacterial cellulose-monolaurin wound dressing was investigated for changes in the chemical structure, mechanical strength, thermal degradation, morphology, and functional swelling properties after exposure to gamma and electron beam radiations at doses 15-50 kGy. Radiation-induced oxidation occurred as seen in the FT-IR peaks at 1720-1750 cm-1. Degradation of the cellulosic network was observed in tensile strength reduction and shift in degradation temperature to lower values. The SEM cross-section images of the irradiated dressings revealed a less dense nanostructure network compared to the non-irradiated samples while the XRD diffractograms indicated a change in lattice direction/plane. Despite these changes, irradiation caused no significant effect on the functional properties especially at 15-25 kGy doses where most biomedical devices are sterilized. All irradiated wound dressings exhibited physical integrity, increased exudate absorption, and water vapor transmission rate - properties beneficial to wound-healing functionality. The pre-selected sterilization dose of 15 kGy for each ionizing radiation was successfully verified and substantiated following ISO 11137-2:2016, hence ionizing radiation is a suitable sterilization modality for the product.


Assuntos
Bactérias , Bandagens , Espectroscopia de Infravermelho com Transformada de Fourier , Esterilização/métodos
2.
J Biomater Appl ; 35(9): 1143-1152, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33100148

RESUMO

Carboxymethyl cellulose granules (CMC-G) and kappa-carrageenan/polyethylene oxide/polyethylene glycol dressing (KPP-D) hemostatic agents, developed through radiation-induced crosslinking and sterilization, were tested in Sprague-Dawley rats using three bleeding models: (a) deep wound with the puncture of femoral artery; (b) aortic puncture; and (c) partial nephrectomy. Dressing and granules were applied in the animals without sustained compression and monitored for a period of 7 or 14 days. Comparisons were made against the commercial chitosan-based agent, Celox (CLX). Primary outcomes observed were bleeding time, the incidence of re-bleeding, animal survival, as well as gross and microscopic changes. The KPP-D group showed the shortest bleeding time for all bleeding models (a. 2.75 ± 0.64, b. 1.63 ± 0.54, c. 2.05 ± 0.62), significantly faster than all the other treatment groups. KPP-D also registered the highest survival rate of 100% with no display of gross abnormalities. CMC-G showed comparable bleeding time with CLX products but had a better survival rate at 98% compared to 96%. The incidence of re-bleeding was greater in CLX treated groups as well as more occurrence of granular adhesions that impacted mortality outcomes. Findings indicate the efficacy of KPP-D in the treatment of severe hemorrhage due to traumatic injury and intraoperative cases, while CMC-G was more suited for external trauma. Complications arising from inflammation, granules deposition, and adhesions emphasize stringent handling and removal of granular hemostat as a critical consideration in hemostat development and testing.


Assuntos
Bandagens , Hemorragia/tratamento farmacológico , Hemostáticos/química , Hemostáticos/farmacologia , Animais , Aorta/lesões , Tempo de Sangramento , Carboximetilcelulose Sódica/química , Carragenina/química , Modelos Animais de Doenças , Artéria Femoral , Raios gama , Masculino , Polietilenoglicóis/química , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...