Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 93(2): 559-572, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30446773

RESUMO

N-nitroso compounds are alkylating agents, which are widespread in our diet and the environment. They induce DNA alkylation adducts such as O6-methylguanine (O6-MeG), which is repaired by O6-methylguanine-DNA methyltransferase (MGMT). Persistent O6-MeG lesions have detrimental biological consequences like mutagenicity and cytotoxicity. Due to its pivotal role in the etiology of cancer and in cytotoxic cancer therapy, it is important to detect and quantify O6-MeG in biological specimens in a sensitive and accurate manner. Here, we used immunological approaches and established an ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to monitor O6-MeG adducts. First, colorectal cancer (CRC) cells were treated with the methylating anticancer drug temozolomide (TMZ). Immunofluorescence microscopy and an immuno-slot blot assay, both based on an adduct-specific antibody, allowed for the semi-quantitative, dose-dependent assessment of O6-MeG in CRC cells. Using the highly sensitive and specific UPLC-MS/MS, TMZ-induced O6-MeG adducts were quantified in CRC cells and even in peripheral blood mononuclear cells exposed to clinically relevant TMZ doses. Furthermore, all methodologies were used to detect O6-MeG in wildtype (WT) and MGMT-deficient mice challenged with the carcinogen azoxymethane. UPLC-MS/MS measurements and dose-response modeling revealed a non-linear formation of hepatic and colonic O6-MeG adducts in WT, whereas linear O6-MeG formation without a threshold was observed in MGMT-deficient mice. Collectively, the UPLC-MS/MS analysis is highly sensitive and specific for O6-MeG, thereby allowing for the first time for the determination of a genotoxic threshold upon exposure to O6-methylating agents. We envision that this method will be instrumental to monitor the efficacy of methylating chemotherapy and to assess dietary exposures.


Assuntos
Cromatografia Líquida/métodos , Adutos de DNA/análise , Guanina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Animais , Antineoplásicos Alquilantes/administração & dosagem , Azoximetano/administração & dosagem , Adutos de DNA/imunologia , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Relação Dose-Resposta a Droga , Guanina/análise , Guanina/imunologia , Células HCT116 , Humanos , Immunoblotting/métodos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia de Fluorescência/métodos , Sensibilidade e Especificidade , Temozolomida/administração & dosagem , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Nanotoxicology ; 11(4): 496-506, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28368214

RESUMO

Nanotechnology offers new opportunities for providing health benefits in foods. Food fortification with iron phosphate nanoparticles (FePO4 NPs) is a promising new approach to reducing iron deficiency because FePO4 NPs combine high bioavailability with superior sensory performance in difficult to fortify foods. However, their safety remains largely untested. We fed rats for 90 days diets containing FePO4 NPs at doses at which iron sulfate (FeSO4), a commonly used food fortificant, has been shown to induce adverse effects. Feeding did not result in signs of toxicity, including oxidative stress, organ damage, excess iron accumulation in organs or histological changes. These safety data were corroborated by evidence that NPs were taken up by human gastrointestinal cell lines without reducing cell viability or inducing oxidative stress. Our findings suggest FePO4 NPs appear to be as safe for ingestion as FeSO4.


Assuntos
Compostos Férricos , Alimentos Fortificados , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Animais , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Dieta , Relação Dose-Resposta a Droga , Compostos Férricos/administração & dosagem , Compostos Férricos/efeitos adversos , Compostos Férricos/metabolismo , Glutationa/metabolismo , Células HT29 , Humanos , Sobrecarga de Ferro , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Nanopartículas/metabolismo , Ratos , Ratos Sprague-Dawley
3.
J Am Chem Soc ; 138(27): 8497-504, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27314828

RESUMO

Exposure of DNA to chemicals can result in the formation of DNA adducts, a molecular initiating event in genotoxin-induced carcinogenesis. O(6)-Methylguanine (O(6)-MeG) is a highly mutagenic DNA adduct that forms in human genomic DNA upon reaction with methylating agents of dietary, environmental, or endogenous origin. In this work, we report the design and synthesis of novel non-natural nucleoside analogues 1'-ß-[1-naphtho[2,3-d]imidazol-2(3H)-one)]-2'-deoxy-d-ribofuranose and 1'-ß-[1-naphtho[2,3-d]imidazole]-2'-deoxy-d-ribofuranose and their use for quantifying O(6)-MeG within mutational hotspots of the human KRAS gene. The novel nucleoside analogues were incorporated into oligonucleotides conjugated to gold nanoparticles to comprise a DNA hybridization probe system for detecting O(6)-MeG in a sequence-specific manner on the basis of colorimetric readout of the nanoparticles. The concept described herein is unique in utilizing new nucleoside analogues with elongated hydrophobic surfaces to successfully measure in-gene abundance of O(6)-MeG in mixtures with competing unmodified DNA.


Assuntos
Exorribonucleases/química , Ouro/química , Guanina/análogos & derivados , Nanopartículas Metálicas/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Genes ras/genética , Genoma Humano/genética , Guanina/química , Guanina/metabolismo , Humanos , Temperatura
4.
Chem Commun (Camb) ; 50(98): 15517-20, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25354716

RESUMO

A colorimetric probe for the detection of a mutagenic DNA adduct within a sequence was created. The probe involves incorporation of a synthetic nucleoside that selectively pairs opposite a target DNA adduct into oligonucleotides conjugated to gold nanoparticles (AuNPs).


Assuntos
Adutos de DNA/análise , Ouro/química , Nanopartículas/química , Oligonucleotídeos/química , Técnicas Biossensoriais , Espectrofotometria
5.
Langmuir ; 29(34): 10824-30, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23883185

RESUMO

The programmable assembly of functional nanomaterials has been extensively addressed; however, their selective reversible assembly in response to an external stimulus has been more difficult to realize. The specificity and programmable interactions of DNA have been exploited for the rational self-assembly of DNA-conjugated nanoparticles, and here we demonstrate the sequence-controlled disaggregation of DNA-modified gold nanoparticles simply by employing two complementary oligonucleotides. Target oligonucleotides with perfectly matching sequence enabled dissociation of aggregated nanoparticles, whereas oligonucleotides differing by one nucleotide did not cause disassembly of the aggregated nanoparticles. Physical aspects of this process were characterized by UV-vis absorption, light scattering, and transmission electron microscopy. This strategy for programmed disassembly of gold nanoparticles in response to biological stimuli demonstrates a fundamentally important concept anticipated to be useful for diverse applications involving molecular recognition.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química
6.
J Agric Food Chem ; 60(4): 912-6, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22224624

RESUMO

A method is reported for species quantification by exploiting single-nucleotide polymorphisms (SNPs). These single-base changes in DNA are particularly useful because they enable discrimination of closely related species and/or varieties. As a model, quantitative authentication studies were performed on coffee. These involved the determination of the percentage of Arabica and Robusta species based on a SNP in the chloroplastic trnL(UAA)-trnF(GAA) intraspacer region. Following polymerase chain reaction (PCR), the Robusta-specific and Arabica-specific fragments were subjected to 15 min extension reactions by DNA polymerase using species-specific primers carrying oligo(dA) tags. Biotin was incorporated into the extended strands. The products were captured in streptavidin-coated microtiter wells and quantified by using oligo(dT)-conjugated photoprotein aequorin. Aequorin was measured within 3 s via its characteristic flash-type bioluminescent reaction that was triggered by the addition of Ca(2+). Because of the close resemblance between the two DNA fragments, during PCR one species serves as an internal standard for the other. The percentage of the total luminescence signal obtained from a certain species was linearly related to the percent content of the sample with respect to this species. The method is accurate and reproducible. The microtiter well-based assay configuration allows high sample throughput and facilitates greatly the automation.


Assuntos
Coffea/classificação , DNA de Plantas/análise , Alimentos/classificação , Medições Luminescentes/métodos , Coffea/química , Coffea/genética , Contaminação de Alimentos/análise , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Sementes/química , Sementes/classificação , Sementes/genética
7.
J Agric Food Chem ; 60(3): 713-7, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22225459

RESUMO

This paper reports DNA-based food authenticity assays, in which species identification is accomplished by the naked eye without the need of specialized instruments. Strongly colored nanoparticles (gold nanoparticles) are employed as reporters that enable visual detection. Furthermore, detection is performed in a low-cost, disposable, dipstick-type device that incorporates the required reagents in dry form, thereby avoiding multiple pipetting and incubation steps. Due to its simplicity, the method does not require highly qualified personnel. The procedure comprises the following steps: (i) PCR amplification of the DNA segment that flanks the unique SNP (species marker); (ii) a 15 min extension reaction in which DNA polymerase extends an allele-specific primer only if it is perfectly complementary with the target sequence; (iii) detection of the products of the extension reaction within a few minutes by the naked eye employing the dipstick. No purification is required prior to application of the extension products to the dipstick. The method is general and requires only a unique DNA sequence for species discrimination. The only instrument needed is a conventional thermocycler for PCR, which is common equipment in every DNA laboratory. As a model, the method was applied to the discrimination of Coffea robusta and arabica species in coffee authenticity assessment. As low as 5% of Robusta coffee can be detected in the presence of Arabica coffee.


Assuntos
Coffea/genética , DNA de Plantas/genética , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Reação em Cadeia da Polimerase/métodos , Análise de Alimentos/economia , Análise de Alimentos/instrumentação , Genótipo , Reação em Cadeia da Polimerase/economia , Reação em Cadeia da Polimerase/instrumentação , Polimorfismo de Nucleotídeo Único
8.
J Am Chem Soc ; 132(14): 5091-5, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20232860

RESUMO

The protein truncation test (PTT) is important in screening for unknown mutations that cause premature termination of mRNA translation. PTT involves amplification of the interrogated sequence, in vitro transcription/translation, separation of the generated polypeptides, and detection. In this article, we report a bioluminescent protein truncation test, in which the detection of the nascent protein is performed directly in the expression mixture, within seconds, without the need for separation and purification. A DNA fragment encoding apoaequorin is fused, in-frame, downstream of the interrogated sequence. The fusion product is subjected to in vitro, coupled transcription and translation in the presence of coelenterazine. A wild-type DNA template allows translation to continue after the 3' end of the interrogated sequence, producing a chimeric protein whose C-terminal domain is the photoprotein aequorin. Aequorin is detected, with a high sensitivity, by its characteristic Ca(2+)-triggered, flash-type bioluminescent reaction. Active photoprotein is not produced when a truncating mutation is present in the interrogated sequence. As a model, the method was applied to the detection of truncating mutations in the APC gene (adenomatous polyposis coli).


Assuntos
Equorina/genética , Medições Luminescentes/métodos , Equorina/síntese química , Equorina/química , DNA/química , DNA/genética , Humanos , Mutação , Sensibilidade e Especificidade , Regiões Terminadoras Genéticas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...