Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Affect Disord ; 351: 49-57, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280568

RESUMO

INTRODUCTION: Mnemonic discrimination (MD), the ability to discriminate new stimuli from similar memories, putatively involves dentate gyrus pattern separation. Since lithium may normalize dentate gyrus functioning in lithium-responsive bipolar disorder (BD), we hypothesized that lithium treatment would be associated with better MD in lithium-responsive BD patients. METHODS: BD patients (N = 69; NResponders = 16 [23 %]) performed the Continuous Visual Memory Test (CVMT), which requires discriminating between novel and previously seen images. Before testing, all patients had prophylactic lithium responsiveness assessed over ≥1 year of therapy (with the Alda Score), although only thirty-eight patients were actively prescribed lithium at time of testing (55 %; 12/16 responders, 26/53 nonresponders). We then used computational modelling to extract patient-specific MD indices. Linear models were used to test how (A) lithium treatment, (B) lithium responsiveness via the continuous Alda score, and (C) their interaction, affected MD. RESULTS: Superior MD performance was associated with lithium treatment exclusively in lithium-responsive patients (Lithium x AldaScore ß = 0.257 [SE 0.078], p = 0.002). Consistent with prior literature, increased age was associated with worse MD (ß = -0.03 [SE 0.01], p = 0.005). LIMITATIONS: Secondary pilot analysis of retrospectively collected data in a cross-sectional design limits generalizability. CONCLUSION: Our study is the first to examine MD performance in BD. Lithium is associated with better MD performance only in lithium responders, potentially due to lithium's effects on dentate gyrus granule cell excitability. Our results may influence the development of behavioural probes for dentate gyrus neuronal hyperexcitability in BD.


Assuntos
Transtorno Bipolar , Lítio , Humanos , Lítio/uso terapêutico , Lítio/farmacologia , Transtorno Bipolar/tratamento farmacológico , Projetos Piloto , Estudos Retrospectivos , Estudos Transversais , Compostos de Lítio/uso terapêutico
2.
Hippocampus ; 34(1): 14-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950569

RESUMO

Mnemonic discrimination (MD) may be dependent on oscillatory perforant path input frequencies to the hippocampus in a "U"-shaped fashion, where some studies show that slow and fast input frequencies support MD, while other studies show that intermediate frequencies disrupt MD. We hypothesize that pattern separation (PS) underlies frequency-dependent MD performance. We aim to study, in a computational model of the hippocampal dentate gyrus (DG), the network and cellular mechanisms governing this putative "U"-shaped PS relationship. We implemented a biophysical model of the DG that produces the hypothesized "U"-shaped input frequency-PS relationship, and its associated oscillatory electrophysiological signatures. We subsequently evaluated the network's PS ability using an adapted spatiotemporal task. We undertook systematic lesion studies to identify the network-level mechanisms driving the "U"-shaped input frequency-PS relationship. A minimal circuit of a single granule cell (GC) stimulated with oscillatory inputs was also used to study potential cellular-level mechanisms. Lesioning synapses onto GCs did not impact the "U"-shaped input frequency-PS relationship. Furthermore, GC inhibition limits PS performance for fast frequency inputs, while enhancing PS for slow frequency inputs. GC interspike interval was found to be input frequency dependent in a "U"-shaped fashion, paralleling frequency-dependent PS observed at the network level. Additionally, GCs showed an attenuated firing response for fast frequency inputs. We conclude that independent of network-level inhibition, GCs may intrinsically be capable of producing a "U"-shaped input frequency-PS relationship. GCs may preferentially decorrelate slow and fast inputs via spike timing reorganization and high frequency filtering.


Assuntos
Giro Denteado , Neurônios , Giro Denteado/fisiologia , Neurônios/fisiologia , Hipocampo/fisiologia , Via Perfurante , Sinapses/fisiologia
3.
Brain Sci ; 13(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38002522

RESUMO

Subanaesthetic doses of ketamine increase γ oscillation power in neural activity measured using electroencephalography (EEG), and this effect lasts several hours after ketamine administration. The mechanisms underlying this effect are unknown. Using a computational model of the hippocampal cornu ammonis 3 (CA3) network, which is known to reproduce ketamine's acute effects on γ power, we simulated the plasticity of glutamatergic synapses in pyramidal cells to test which of the following hypotheses would best explain this sustained γ power: the direct inhibition hypothesis, which proposes that increased γ power post-ketamine administration may be caused by the potentiation of recurrent collateral synapses, and the disinhibition hypothesis, which proposes that potentiation affects synapses from both recurrent and external inputs. Our results suggest that the strengthening of external connections to pyramidal cells is able to account for the sustained γ power increase observed post-ketamine by increasing the overall activity of and synchrony between pyramidal cells. The strengthening of recurrent pyramidal weights, however, would cause an additional phase shifted voltage increase that ultimately reduces γ power due to partial cancellation. Our results therefore favor the disinhibition hypothesis for explaining sustained γ oscillations after ketamine administration.

4.
Transl Psychiatry ; 12(1): 416, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171199

RESUMO

Bipolar disorder (BD) is a mood disorder involving recurring (hypo)manic and depressive episodes. The inherently temporal nature of BD has inspired its conceptualization using dynamical systems theory, which is a mathematical framework for understanding systems that evolve over time. In this paper, we provide a critical review of the dynamical systems models of BD. Owing to the heterogeneity of methodological and experimental designs in computational modeling, we designed a structured approach that parallels the appraisal of animal models by their face, predictive, and construct validity. This tool, the validity appraisal guide for computational models (VAG-CM), is not an absolute measure of validity, but rather a guide for a more objective appraisal of models in this review. We identified 26 studies published before November 18, 2021 that proposed generative dynamical systems models of time-varying signals in BD. Two raters independently applied the VAG-CM to the included studies, obtaining a mean Cohen's κ of 0.55 (95% CI [0.45, 0.64]) prior to establishing consensus ratings. Consensus VAG-CM ratings revealed three model/study clusters: data-driven models with face validity, theory-driven models with predictive validity, and theory-driven models lacking all forms of validity. We conclude that future modeling studies should employ a hybrid approach that first operationalizes BD features of interest using empirical data to achieve face validity, followed by explanations of those features using generative models with components that are homologous to physiological or psychological systems involved in BD, to achieve construct validity. Such models would be best developed alongside long-term prospective cohort studies involving a collection of multimodal time-series data. We also encourage future studies to extend, modify, and evaluate the VAG-CM approach for a wider breadth of computational modeling studies and psychiatric disorders.


Assuntos
Transtorno Bipolar , Animais , Transtorno Bipolar/psicologia , Estudos Prospectivos , Recidiva , Reprodutibilidade dos Testes
5.
J Appl Clin Med Phys ; 23(9): e13662, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35686988

RESUMO

A large volume of medical data are labeled using nonstandardized nomenclature. Although efforts have been made by the American Association of Physicists in Medicine (AAPM) to standardize nomenclature through Task Group 263 (TG-263), there remain noncompliant databases. This work aims to create an algorithm that can analyze anatomical contours in patients with head and neck cancer and classify them into TG-263 compliant nomenclature. To create an accurate algorithm capable of such classification, a combined approaching using both binary images of individual slices of anatomical contours themselves, as well as center of mass coordinates of the structures are input into a neural network. The center of mass coordinates were scaled using two normalization schemes, a simple linear normalization scheme agnostic of the patient anatomy, and an anatomical normalization scheme dependent on patient anatomy. The results of all of the individual slice classifications are then aggregated into a single classification by means of a voting algorithm. The total classification accuracy of the final algorithms was 97.6% mean accuracy per class for nonanatomically normalization scheme, and 97.9% mean accuracy per class for anatomically normalization scheme. The total accuracy was 99.0% (13 errors in 1302 structures) for the nonanatomically normalization scheme, and 98.3% (22 errors in 1302 structures) for the anatomically normalization scheme.


Assuntos
Neoplasias de Cabeça e Pescoço , Aprendizado de Máquina , Algoritmos , Bases de Dados Factuais , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Redes Neurais de Computação
6.
Psychiatr Genet ; 32(1): 1-8, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694248

RESUMO

An improved understanding of genetic etiological heterogeneity in a psychiatric condition may help us (a) isolate a neurophysiological 'final common pathway' by identifying its upstream genetic origins and (b) facilitate characterization of the condition's phenotypic variation. This review aims to identify existing genetic heterogeneity measurements in the psychiatric literature and provides a conceptual review of their mechanisms, limitations, and assumptions. The Scopus database was searched for studies that quantified genetic heterogeneity or correlation of psychiatric phenotypes with human genetic data. Ninety studies were included. Eighty-seven reports quantified genetic correlation, five applied genomic structural equation modelling, three evaluated departure from the Hardy-Weinberg equilibrium at one or more loci, and two applied a novel approach known as MiXeR. We found no study that rigorously measured genetic etiological heterogeneity across a large number of markers. Developing such approaches may help better characterize the biological diversity of psychopathology.


Assuntos
Heterogeneidade Genética , Transtornos Mentais , Genômica , Humanos , Transtornos Mentais/genética , Fenótipo
7.
BMC Ecol Evol ; 21(1): 123, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134620

RESUMO

BACKGROUND: Plankton are foundational to marine food webs and an important feature for characterizing ocean health. Recent developments in quantitative imaging devices provide in-flow high-throughput sampling from bulk volumes-opening new ecological challenges exploring microbial eukaryotic variation and diversity, alongside technical hurdles to automate classification from large datasets. However, a limited number of deployable imaging instruments have been coupled with the most prominent classification algorithms-effectively limiting the extraction of curated observations from field deployments. Holography offers relatively simple coherent microscopy designs with non-intrusive 3-D image information, and rapid frame rates that support data-driven plankton imaging tasks. Classification benchmarks across different domains have been set with transfer learning approaches, focused on repurposing pre-trained, state-of-the-art deep learning models as classifiers to learn new image features without protracted model training times. Combining the data production of holography, digital image processing, and computer vision could improve in-situ monitoring of plankton communities and contribute to sampling the diversity of microbial eukaryotes. RESULTS: Here we use a light and portable digital in-line holographic microscope (The HoloSea) with maximum optical resolution of 1.5 µm, intensity-based object detection through a volume, and four different pre-trained convolutional neural networks to classify > 3800 micro-mesoplankton (> 20 µm) images across 19 classes. The maximum classifier performance was quickly achieved for each convolutional neural network during training and reached F1-scores > 89%. Taking classification further, we show that off-the-shelf classifiers perform strongly across every decision threshold for ranking a majority of the plankton classes. CONCLUSION: These results show compelling baselines for classifying holographic plankton images, both rare and plentiful, including several dinoflagellate and diatom groups. These results also support a broader potential for deployable holographic microscopes to sample diverse microbial eukaryotic communities, and its use for high-throughput plankton monitoring.


Assuntos
Holografia , Aprendizado de Máquina , Microscopia , Redes Neurais de Computação , Plâncton
8.
Transl Psychiatry ; 11(1): 36, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431852

RESUMO

Predicting lithium response (LiR) in bipolar disorder (BD) may inform treatment planning, but phenotypic heterogeneity complicates discovery of genomic markers. We hypothesized that patients with "exemplary phenotypes"-those whose clinical features are reliably associated with LiR and non-response (LiNR)-are more genetically separable than those with less exemplary phenotypes. Using clinical data collected from people with BD (n = 1266 across 7 centers; 34.7% responders), we computed a "clinical exemplar score," which measures the degree to which a subject's clinical phenotype is reliably predictive of LiR/LiNR. For patients whose genotypes were available (n = 321), we evaluated whether a subgroup of responders/non-responders with the top 25% of clinical exemplar scores (the "best clinical exemplars") were more accurately classified based on genetic data, compared to a subgroup with the lowest 25% of clinical exemplar scores (the "poor clinical exemplars"). On average, the best clinical exemplars of LiR had a later illness onset, completely episodic clinical course, absence of rapid cycling and psychosis, and few psychiatric comorbidities. The best clinical exemplars of LiR and LiNR were genetically separable with an area under the receiver operating characteristic curve of 0.88 (IQR [0.83, 0.98]), compared to 0.66 [0.61, 0.80] (p = 0.0032) among poor clinical exemplars. Variants in the Alzheimer's amyloid-secretase pathway, along with G-protein-coupled receptor, muscarinic acetylcholine, and histamine H1R signaling pathways were informative predictors. This study must be replicated on larger samples and extended to predict response to other mood stabilizers.


Assuntos
Transtorno Bipolar , Antimaníacos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Humanos , Lítio/uso terapêutico , Compostos de Lítio/uso terapêutico , Fenótipo
9.
Entropy (Basel) ; 22(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33286192

RESUMO

A discrete system's heterogeneity is measured by the Rényi heterogeneity family of indices (also known as Hill numbers or Hannah-Kay indices), whose units are the numbers equivalent. Unfortunately, numbers equivalent heterogeneity measures for non-categorical data require a priori (A) categorical partitioning and (B) pairwise distance measurement on the observable data space, thereby precluding application to problems with ill-defined categories or where semantically relevant features must be learned as abstractions from some data. We thus introduce representational Rényi heterogeneity (RRH), which transforms an observable domain onto a latent space upon which the Rényi heterogeneity is both tractable and semantically relevant. This method requires neither a priori binning nor definition of a distance function on the observable space. We show that RRH can generalize existing biodiversity and economic equality indices. Compared with existing indices on a beta-mixture distribution, we show that RRH responds more appropriately to changes in mixture component separation and weighting. Finally, we demonstrate the measurement of RRH in a set of natural images, with respect to abstract representations learned by a deep neural network. The RRH approach will further enable heterogeneity measurement in disciplines whose data do not easily conform to the assumptions of existing indices.

10.
Entropy (Basel) ; 22(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33286629

RESUMO

A system's heterogeneity (diversity) is the effective size of its event space, and can be quantified using the Rényi family of indices (also known as Hill numbers in ecology or Hannah-Kay indices in economics), which are indexed by an elasticity parameter q≥0. Under these indices, the heterogeneity of a composite system (the γ-heterogeneity) is decomposable into heterogeneity arising from variation within and between component subsystems (the α- and ß-heterogeneity, respectively). Since the average heterogeneity of a component subsystem should not be greater than that of the pooled system, we require that γ≥α. There exists a multiplicative decomposition for Rényi heterogeneity of composite systems with discrete event spaces, but less attention has been paid to decomposition in the continuous setting. We therefore describe multiplicative decomposition of the Rényi heterogeneity for continuous mixture distributions under parametric and non-parametric pooling assumptions. Under non-parametric pooling, the γ-heterogeneity must often be estimated numerically, but the multiplicative decomposition holds such that γ≥α for q>0. Conversely, under parametric pooling, γ-heterogeneity can be computed efficiently in closed-form, but the γ≥α condition holds reliably only at q=1. Our findings will further contribute to heterogeneity measurement in continuous systems.

11.
PLoS One ; 15(11): e0242320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33186399

RESUMO

Normative modeling is an increasingly popular method for characterizing the ways in which clinical cohorts deviate from a reference population, with respect to one or more biological features. In this paper, we extend the normative modeling framework with an approach for measuring the amount of heterogeneity in a cohort. This heterogeneity measure is based on the Representational Rényi Heterogeneity method, which generalizes diversity measurement paradigms used across multiple scientific disciplines. We propose that heterogeneity in the normative modeling setting can be measured as the effective number of deviation patterns; that is, the effective number of coherent patterns by which a sample of data differ from a distribution of normative variation. We show that lower effective number of deviation patterns is associated with the presence of systematic differences from a (non-degenerate) normative distribution. This finding is shown to be consistent across (A) application of a Gaussian process model to synthetic and real-world neuroimaging data, and (B) application of a variational autoencoder to well-understood database of handwritten images.


Assuntos
Modelos Estatísticos , Transtorno Autístico/diagnóstico por imagem , Humanos , Neuroimagem
12.
Transl Psychiatry ; 10(1): 299, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839448

RESUMO

Heterogeneity is an important concept in psychiatric research and science more broadly. It negatively impacts effect size estimates under case-control paradigms, and it exposes important flaws in our existing categorical nosology. Yet, our field has no precise definition of heterogeneity proper. We tend to quantify heterogeneity by measuring associated correlates such as entropy or variance: practices which are akin to accepting the radius of a sphere as a measure of its volume. Under a definition of heterogeneity as the degree to which a system deviates from perfect conformity, this paper argues that its proper measure roughly corresponds to the size of a system's event/sample space, and has units known as numbers equivalent. We arrive at this conclusion through focused review of more than 100 years of (re)discoveries of indices by ecologists, economists, statistical physicists, and others. In parallel, we review psychiatric approaches for quantifying heterogeneity, including but not limited to studies of symptom heterogeneity, microbiome biodiversity, cluster-counting, and time-series analyses. We argue that using numbers equivalent heterogeneity measures could improve the interpretability and synthesis of psychiatric research on heterogeneity. However, significant limitations must be overcome for these measures-largely developed for economic and ecological research-to be useful in modern translational psychiatric science.


Assuntos
Estudos de Casos e Controles
13.
PLoS One ; 15(1): e0225353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31986152

RESUMO

The Alda score is commonly used to quantify lithium responsiveness in bipolar disorder. Most often, this score is dichotomized into "responder" and "non-responder" categories, respectively. This practice is often criticized as inappropriate, since continuous variables are thought to invariably be "more informative" than their dichotomizations. We therefore investigated the degree of informativeness across raw and dichotomized versions of the Alda score, using data from a published study of the scale's inter-rater reliability (n = 59 raters of 12 standardized vignettes each). After learning a generative model for the relationship between observed and ground truth scores (the latter defined by a consensus rating of the 12 vignettes), we show that the dichotomized scale is more robust to inter-rater disagreement than the raw 0-10 scale. Further theoretical analysis shows that when a measure's reliability is stronger at one extreme of the continuum-a scenario which has received little-to-no statistical attention, but which likely occurs for the Alda score ≥ 7-dichotomization of a continuous variable may be more informative concerning its ground truth value, particularly in the presence of noise. Our study suggests that research employing the Alda score of lithium responsiveness should continue using the dichotomous definition, particularly when data are sampled across multiple raters.


Assuntos
Intervalos de Confiança , Compostos de Lítio/efeitos adversos , Probabilidade , Animais , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia , Humanos , Linguagens de Programação
15.
Front Neurorobot ; 13: 52, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354468

RESUMO

It is well-established that human decision making and instrumental control uses multiple systems, some which use habitual action selection and some which require deliberate planning. Deliberate planning systems use predictions of action-outcomes using an internal model of the agent's environment, while habitual action selection systems learn to automate by repeating previously rewarded actions. Habitual control is computationally efficient but are not very flexible in changing environments. Conversely, deliberate planning may be computationally expensive, but flexible in dynamic environments. This paper proposes a general architecture comprising both control paradigms by introducing an arbitrator that controls which subsystem is used at any time. This system is implemented for a target-reaching task with a simulated two-joint robotic arm that comprises a supervised internal model and deep reinforcement learning. Through permutation of target-reaching conditions, we demonstrate that the proposed is capable of rapidly learning kinematics of the system without a priori knowledge, and is robust to (A) changing environmental reward and kinematics, and (B) occluded vision. The arbitrator model is compared to exclusive deliberate planning with the internal model and exclusive habitual control instances of the model. The results show how such a model can harness the benefits of both systems, using fast decisions in reliable circumstances while optimizing performance in changing environments. In addition, the proposed model learns very fast. Finally, the system which includes internal models is able to reach the target under the visual occlusion, while the pure habitual system is unable to operate sufficiently under such conditions.

16.
Comput Med Imaging Graph ; 75: 14-23, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31117012

RESUMO

Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is a method of temporal imaging that is commonly used to aid in prostate cancer (PCa) diagnosis and staging. Typically, machine learning models designed for the segmentation and detection of PCa will use an engineered scalar image called Ktrans to summarize the information in the DCE time-series images. This work proposes a new model that amalgamates the U-net and the convGRU neural network architectures for the purpose of interpreting DCE time-series in a temporal and spatial basis for segmenting PCa in MR images. Ultimately, experiments show that the proposed model using the DCE time-series images can outperform a baseline U-net segmentation model using Ktrans. However, when other types of scalar MR images are considered by the models, no significant advantage is observed for the proposed model.


Assuntos
Meios de Contraste , Redes Neurais de Computação , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Algoritmos , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
17.
Front Syst Neurosci ; 13: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814938

RESUMO

The distributed nature of information processing in the brain creates a complex variety of decision making behavior. Likewise, computational models of saccadic decision making behavior are numerous and diverse. Here we present a generative model of saccadic action selection in the context of competitive decision making in the superior colliculus (SC) in order to investigate how independent neural signals may converge to interact and guide saccade selection, and to test if systematic variations can better replicate the variability in responses that are part of normal human behavior. The model was tasked with performing pro- and anti-saccades in order to replicate specific attributes of healthy human saccade behavior. Participants (ages 18-39) were instructed to either look toward (pro-saccade, well-practiced automated response) or away from (anti-saccade, combination of inhibitory and voluntary responses) a peripheral visual stimulus. They generated express and regular latency saccades in the pro-saccade task. In the anti-saccade task, correct reaction times were longer and participants occasionally looked at the stimulus (direction error) at either express or regular latencies. To gain a better understanding of the underlying neural processes that lead to saccadic action selection and response inhibition, we implemented 8 inputs inspired by systems neuroscience. These inputs reflected known sensory, automated, voluntary, and inhibitory components of cortical and basal ganglia activity that coalesces in the intermediate layers of the SC (SCi). The model produced bimodal reaction time distributions, where express and regular latency saccades had distinct modes, for both correct pro-saccades and direction errors in the anti-saccade task. Importantly, express and regular latency direction errors resulted from interactions of different inputs in the model. Express latency direction errors were due to a lack of pre-emptive fixation and inhibitory activity, which aloud sensory and automated inputs to initiate a stimulus-driven saccade. Regular latency errors occurred when the automated motor signals were stronger than the voluntary motor signals. While previous models have emulated fewer aspects of these behavioral findings, the focus of the simulations here is on the interaction of a wide variety of physiologically-based information integration producing a richer set of natural behavioral variability.

18.
Int J Psychophysiol ; 127: 62-72, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29551656

RESUMO

The visual environment is filled with complex, multi-dimensional objects that vary in their value to an observer's current goals. When faced with multi-dimensional stimuli, humans may rely on biases to learn to select those objects that are most valuable to the task at hand. Here, we show that decision making in a complex task is guided by the sparsity bias: the focusing of attention on a subset of available features. Participants completed a gambling task in which they selected complex stimuli that varied randomly along three dimensions: shape, color, and texture. Each dimension comprised three features (e.g., color: red, green, yellow). Only one dimension was relevant in each block (e.g., color), and a randomly-chosen value ranking determined outcome probabilities (e.g., green > yellow > red). Participants were faster to respond to infrequent probe stimuli that appeared unexpectedly within stimuli that possessed a more valuable feature than to probes appearing within stimuli possessing a less valuable feature. Event-related brain potentials recorded during the task provided a neurophysiological explanation for sparsity as a learning-dependent increase in optimal attentional performance (as measured by the N2pc component of the human event-related potential) and a concomitant learning-dependent decrease in prediction errors (as measured by the feedback-elicited reward positivity). Together, our results suggest that the sparsity bias guides human reinforcement learning in complex environments.


Assuntos
Atenção/fisiologia , Viés , Potenciais Evocados/fisiologia , Aprendizagem/fisiologia , Percepção Visual/fisiologia , Adolescente , Mapeamento Encefálico , Tomada de Decisões/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia , Recompensa , Adulto Jovem
19.
Neural Netw ; 72: 13-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26559472

RESUMO

Humans can point fairly accurately to memorized states when closing their eyes despite slow or even missing sensory feedback. It is also common that the arm dynamics changes during development or from injuries. We propose a biologically motivated implementation of an arm controller that includes an adaptive observer. Our implementation is based on the neural field framework, and we show how a path integration mechanism can be trained from few examples. Our results illustrate successful generalization of path integration with a dynamic neural field by which the robotic arm can move in arbitrary directions and velocities. Also, by adapting the strength of the motor effect the observer implicitly learns to compensate an image acquisition delay in the sensory system. Our dynamic implementation of an observer successfully guides the arm toward the target in the dark, and the model produces movements with a bell-shaped velocity profile, consistent with human behavior data.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Braço , Humanos , Aprendizagem , Robótica
20.
Neural Netw ; 67: 121-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25897512

RESUMO

Biological systems are capable of learning that certain stimuli are valuable while ignoring the many that are not, and thus perform feature selection. In machine learning, one effective feature selection approach is the least absolute shrinkage and selection operator (LASSO) form of regularization, which is equivalent to assuming a Laplacian prior distribution on the parameters. We review how such Bayesian priors can be implemented in gradient descent as a form of weight decay, which is a biologically plausible mechanism for Bayesian feature selection. In particular, we describe a new prior that offsets or "raises" the Laplacian prior distribution. We evaluate this alongside the Gaussian and Cauchy priors in gradient descent using a generic regression task where there are few relevant and many irrelevant features. We find that raising the Laplacian leads to less prediction error because it is a better model of the underlying distribution. We also consider two biologically relevant online learning tasks, one synthetic and one modeled after the perceptual expertise task of Krigolson et al. (2009). Here, raising the Laplacian prior avoids the fast erosion of relevant parameters over the period following training because it only allows small weights to decay. This better matches the limited loss of association seen between days in the human data of the perceptual expertise task. Raising the Laplacian prior thus results in a biologically plausible form of Bayesian feature selection that is effective in biologically relevant contexts.


Assuntos
Teorema de Bayes , Aprendizado de Máquina , Algoritmos , Simulação por Computador , Humanos , Modelos Neurológicos , Distribuição Normal , Sistemas On-Line , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...