Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1042, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833505

RESUMO

Anti-CRISPR proteins (Acrs) block the activity of CRISPR-associated (Cas) proteins, either by inhibiting DNA interference or by preventing crRNA loading and complex formation. Although the main use of Acrs in genome engineering applications is to lower the cleavage activity of Cas proteins, they can also be instrumental for various other CRISPR-based applications. Here, we explore the genome editing potential of the thermoactive type II-C Cas9 variants from Geobacillus thermodenitrificans T12 (ThermoCas9) and Geobacillus stearothermophilus (GeoCas9) in Escherichia coli. We then demonstrate that the AcrIIC1 protein from Neisseria meningitidis robustly inhibits their DNA cleavage activity, but not their DNA binding capacity. Finally, we exploit these AcrIIC1:Cas9 complexes for gene silencing and base-editing, developing Acr base-editing tools. With these tools we pave the way for future engineering applications in mesophilic and thermophilic bacteria combining the activities of Acr and CRISPR-Cas proteins.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , DNA/genética
2.
CRISPR J ; 6(3): 278-288, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37134217

RESUMO

Most genetic engineering applications reported thus far rely on the type II-A CRISPR-Cas9 nuclease from Streptococcus pyogenes (SpyCas9), limiting the genome-targeting scope. In this study, we demonstrate that a small, naturally accurate, and thermostable type II-C Cas9 ortholog from Geobacillus thermodenitrificans (ThermoCas9) with alternative target site preference is active in human cells, and it can be used as an efficient genome editing tool, especially for gene disruption. In addition, we develop a ThermoCas9-mediated base editor, called ThermoBE4, for programmable nicking and subsequent C-to-T conversions in human genomes. ThermoBE4 exhibits a three times larger window of activity compared with the corresponding SpyCas9 base editor (BE4), which may be an advantage for gene mutagenesis applications. Hence, ThermoCas9 provides an alternative platform that expands the targeting scope of both genome and base editing in human cells.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Geobacillus , Edição de Genes/métodos , Humanos , Genoma , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/metabolismo , Geobacillus/metabolismo , Engenharia Genética/métodos , Escherichia coli , Células HEK293
3.
FEMS Microbiol Lett ; 366(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077304

RESUMO

CRISPR-Cas represents the only adaptive immune system of prokaryotes known to date. These immune systems are widespread among bacteria and archaea, and provide protection against invasion of mobile genetic elements, such as bacteriophages and plasmids. As a result of the arms-race between phages and their prokaryotic hosts, phages have evolved inhibitors known as anti-CRISPR (Acr) proteins to evade CRISPR immunity. In the recent years, several Acr proteins have been described in both temperate and virulent phages targeting diverse CRISPR-Cas systems. Here, we describe the strategies of Acr discovery and the multiple molecular mechanisms by which these proteins operate to inhibit CRISPR immunity. We discuss the biological relevance of Acr proteins and speculate on the implications of their activity for the development of improved CRISPR-based research and biotechnological tools.


Assuntos
Bactérias/virologia , Bacteriófagos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Proteínas Virais/genética , Sistemas CRISPR-Cas , Edição de Genes
4.
Nucleic Acids Res ; 46(13): 6920-6933, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30053228

RESUMO

CRISPR-Cas systems provide bacteria with adaptive immunity against invading DNA elements including bacteriophages and plasmids. While CRISPR technology has revolutionized eukaryotic genome engineering, its application to prokaryotes and their viruses remains less well established. Here we report the first functional CRISPR-Cas system from the genus Listeria and demonstrate its native role in phage defense. LivCRISPR-1 is a type II-A system from the genome of L. ivanovii subspecies londoniensis that uses a small, 1078 amino acid Cas9 variant and a unique NNACAC protospacer adjacent motif. We transferred LivCRISPR-1 cas9 and trans-activating crRNA into Listeria monocytogenes. Along with crRNA encoding plasmids, this programmable interference system enables efficient cleavage of bacterial DNA and incoming phage genomes. We used LivCRISPR-1 to develop an effective engineering platform for large, non-integrating Listeria phages based on allelic replacement and CRISPR-Cas-mediated counterselection. The broad host-range Listeria phage A511 was engineered to encode and express lysostaphin, a cell wall hydrolase that specifically targets Staphylococcus peptidoglycan. In bacterial co-culture, the armed phages not only killed Listeria hosts but also lysed Staphylococcus cells by enzymatic collateral damage. Simultaneous killing of unrelated bacteria by a single phage demonstrates the potential of CRISPR-Cas-assisted phage engineering, beyond single pathogen control.


Assuntos
Bacteriófagos/genética , Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Genoma Viral , Listeria/enzimologia , Bacteriólise , Bacteriófagos/enzimologia , Sistemas CRISPR-Cas/genética , Parede Celular/metabolismo , Técnicas de Cocultura , DNA Viral/genética , DNA Viral/metabolismo , Deleção de Genes , Listeria/genética , Lisostafina/biossíntese , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas Recombinantes/genética , Homologia de Sequência do Ácido Nucleico , Staphylococcus , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...