Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 590-591: 708-719, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28284639

RESUMO

Despite the large number of pharmaceutically active compounds found in natural environments little is known about their transport behavior in groundwater, which is complicated by their wide range of physical and chemical properties. The transport behavior of five widely used and often detected pharmaceutical compounds and one lifestyle drug has therefore been investigated, using a set of three column experiments. The investigated compounds were the anticonvulsant carbamazepine, the lifestyle drug caffeine, the antibiotic sulfamethoxazole, the lipid regulator gemfibrozil, and the nonsteroidal anti-inflammatories ibuprofen and naproxen. The columns were filled with three different types of sand. The substrates consisted of artificially prepared iron-coated sand, artificially prepared organic carbon sand (with 5% leaf compost), and natural aquifer sand from Long Point, Ontario (Canada). The experiments were conducted simultaneously under the same hydraulic conditions and with the same input solution of about 1µg·L-1 of each compound. The transport behavior of the organic compounds differed significantly between both the different columns and the different compounds. A strong correlation was observed between the retardation factors for carbamazepine, gemfibrozil, and ibuprofen and the organic carbon content of the substrate. While the retardation increased with increasing organic carbon content, no direct relationship was observed between the organic carbon content and the removal of these compounds. In contrast, the retardation factors for sulfamethoxazole and naproxen showed no correlation with the organic carbon content but these compounds were significantly removed in the presence of organic matter. The influence of the Fe3+ surfaces in the iron-coated sand was less significant than expected, with all compounds except for sulfamethoxazole having retardation factors <1.8. Caffeine was so strongly removed during transport through those substrates containing organic carbon that no reliable retardation factor could be determined.


Assuntos
Cafeína/metabolismo , Filtração , Poluentes Químicos da Água/metabolismo , Carbamazepina/metabolismo , Genfibrozila/metabolismo , Ibuprofeno/metabolismo , Naproxeno/metabolismo , Ontário , Dióxido de Silício , Sulfametoxazol/metabolismo
2.
Sci Total Environ ; 473-474: 125-31, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24365588

RESUMO

Organic micropollutants are frequently detected in the aquatic environment. Therefore, a large number of field and laboratory studies have been conducted in order to study their fate in the environment. Due to the diversity of chemical properties among these compounds some of them may interact with materials commonly used in field and laboratory studies like tubes, filters, or sample bottles. The aim of our experiment was to study the interaction between those materials and an aqueous solution of 43 widely detected basic, neutral, and acidic organic micropollutants hereby covering a broad range of polarities. Experiments with materials were conducted as a batch study using spiked tap water and for different syringe filters by filtration with subsequent fraction collection. The best recoveries over a wide range of organic compounds were observed for batches in contact with the following materials (in descending order) acryl glass, PTFE, HDPE, and PP. The use of Pharmed©, silicone, NBR70, Tygon©, and LDPE should be avoided. Flexible tubing materials especially influence many of the investigated compounds here. Filtration with most of the tested filter types leads to no significant loss of almost all of the investigated micropollutants. Nonetheless, significant mass losses of some compounds (loratadine, fluoxetine, sertraline, and diuron) were observed during the first mL of the filtration process. No systematic correlation between compound properties, tested materials, and observed mass losses could be identified in this study. The behavior of each compound is specific and thus, not predictable. It is therefore suggested to study the interaction of compounds with filters and material prior to the actual experiment or include blank studies.


Assuntos
Monitoramento Ambiental/instrumentação , Poluentes Ambientais/análise , Compostos Orgânicos/análise , Filtração , Laboratórios , Medição de Risco
3.
J Exp Biol ; 216(Pt 22): 4222-32, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24172888

RESUMO

Dynamic soaring is a small-scale flight manoeuvre which is the basis for the extreme flight performance of albatrosses and other large seabirds to travel huge distances in sustained non-flapping flight. As experimental data with sufficient resolution of these small-scale movements are not available, knowledge is lacking about dynamic soaring and the physical mechanism of the energy gain of the bird from the wind. With new in-house developments of GPS logging units for recording raw phase observations and of a dedicated mathematical method for postprocessing these measurements, it was possible to determine the small-scale flight manoeuvre with the required high precision. Experimental results from tracking 16 wandering albatrosses (Diomedea exulans) in the southern Indian Ocean show the characteristic pattern of dynamic soaring. This pattern consists of four flight phases comprising a windward climb, an upper curve, a leeward descent and a lower curve, which are continually repeated. It is shown that the primary energy gain from the shear wind is attained in the upper curve where the bird changes the flight direction from windward to leeward. As a result, the upper curve is the characteristic flight phase of dynamic soaring for achieving the energy gain necessary for sustained non-flapping flight.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Modelos Teóricos , Vento , Animais , Sistemas de Informação Geográfica , Oceano Índico
4.
J Exp Biol ; 213(4): 558-63, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20118306

RESUMO

Wandering albatrosses routinely forage over thousands of kilometres of open ocean, but the sensory mechanisms used in the food search itself have not been completely elucidated. Recent telemetry studies show that some spatial behaviours of the species are consistent with the 'multimodal foraging strategy' hypothesis which proposes that birds use a combination of olfactory and visual cues while foraging at sea. The 'multimodal foraging strategy' hypothesis, however, still suffers from a lack of experimental evidence, particularly regarding the olfactory capabilities of wandering albatrosses. As an initial step to test the hypothesis, we carried out behavioural experiments exploring the sensory capabilities of adult wandering albatrosses at a breeding colony. Three two-choice tests were designed to investigate the birds' response to olfactory and visual stimuli, individually or in combination. Perception of the different stimuli was assessed by comparing the amount of exploration directed towards an 'experimental' display or a 'control' display. Our results indicate that birds were able to perceive the three types of stimulus presented: olfactory, visual and combined. Moreover, olfactory and visual cues were found to have additional effects on the exploratory behaviours of males. This simple experimental demonstration of reasonable olfactory capabilities in the wandering albatross supports the 'multimodal foraging strategy' and is consistent with recent hypotheses of the evolutionary history of procellariiforms.


Assuntos
Aves/fisiologia , Comportamento Predatório/fisiologia , Animais , Sinais (Psicologia) , Feminino , Masculino , Olfato , Visão Ocular
5.
J Contam Hydrol ; 83(1-2): 53-69, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16343689

RESUMO

Many pharmaceuticals pass the unsaturated zone before reaching an aquifer. Therefore, laboratory sand column transport experiments were conducted to study the transport behavior of carbamazepine, diclofenac, ibuprofen, and propyphenazone under unsaturated conditions. The test water was artificial sewage effluent to simulate the infiltration of reused wastewater. The test water was spiked with the pharmaceutically active compounds and the tracer LiCl. Afterwards it was passed through laboratory sand columns, one experiment for each pharmaceutical. The physical and chemical parameters were recorded and general ions measured. Pharmaceuticals were measured using solid phase extraction, derivatization, and detection with GC-MS. The column experiments indicate a significant elimination of ibuprofen (54%), propyphenazone (55%), and diclofenac (35%), whereas carbamazepine was not eliminated. Retardation factors varied between 1.84 for carbamazepine, 2.51 for propyphenazone, 3.00 for ibuprofen, and 4.80 for diclofenac. These results show that mobility and elimination of diclofenac, ibuprofen, and propyphenazone is about in the same range as for experiments under saturated conditions whereas carbamazepine had a significantly lower sorption and elimination under unsaturated conditions.


Assuntos
Antipirina/análogos & derivados , Carbamazepina/análise , Diclofenaco/análise , Ibuprofeno/análise , Eliminação de Resíduos Líquidos , Adsorção , Antipirina/análise , Sedimentos Geológicos , Dióxido de Silício , Movimentos da Água , Poluentes Químicos da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...