Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytogenet Genome Res ; 160(4): 206-213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32485719

RESUMO

Studies in several organisms have contributed to the understanding of heterochromatin and its biological importance. In bees of the tribe Meliponini, the presence of chromosomes with totally heterochromatic arms has been attributed to the mechanism of karyotype evolution in which this group accumulated heterochromatin to maintain telomere stability after centric fission events. In the present study, the use of classical and molecular cytogenetic techniques as well as automated image analysis software for the description of the karyotypes of Partamonachapadicola and P. nhambiquara bee species revealed variability in the compaction and patterns of chromatin structure. Although both species have the same chromosome number as other species in the genus Partamona (2n = 34), C-banding and image analyses indicated the existence of chromosomes with 3 regions of different staining intensities, suggesting a chromatin structure with distinct patterns and characteristics. Repetitive DNA probes hybridized only in the euchromatic regions, whereas the regions with intermediate staining intensity did not show any hybridization signals. This suggests that these regions present features more similar to heterochromatin. Evidence of the existence of a chromatin class with intermediate condensation compared to euchromatin and heterochromatin indicates a potential mechanism for heterochromatin amplification and demonstrates the need for further studies on this topic. This previously unrecognized class of chromatin should be taken into account in the study of all Meliponini chromosomes.


Assuntos
Abelhas/classificação , Abelhas/genética , Cromatina/genética , Cromatina/metabolismo , Cariotipagem , Animais , Bandeamento Cromossômico , Feminino , Indóis , Masculino , Metáfase
2.
Cytogenet Genome Res ; 158(4): 213-224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31352441

RESUMO

Stingless bees of the genus Melipona are subdivided into 4 subgenera called Eomelipona, Melikerria, Melipona sensu stricto, and Michmelia according to species morphology. Cytogenetically, the species of the genus Melipona show variation in the amount and distribution of heterochromatin along their chromosomes and can be separated into 2 groups: the first with low content of heterochromatin and the second with high content of heterochromatin. These heterochromatin patterns and the number of chromosomes are characteristics exclusive to Melipona karyotypes that distinguish them from the other genera of the Meliponini. To better understand the karyotype organization in Melipona and the relationship among the subgenera, we mapped repetitive sequences and analyzed previously reported cytogenetic data with the aim to identify cytogenetic markers to be used for investigating the phylogenetic relationships and chromosome evolution in the genus. In general, Melipona species have 2n = 18 chromosomes, and the species of each subgenus share the same characteristics in relation to heterochromatin regions, DAPI/CMA3 fluorophores, and the number and distribution of 18S rDNA sites. Microsatellites were observed only in euchromatin regions, whereas the (TTAGG)6 repeats were found at telomeric sites in both groups. Our data indicate that in addition to the chromosome number, the karyotypes in Melipona could be separated into 2 groups that are characterized by conserved cytogenetic features and patterns that generally are shared by species within each subgenus, which may reflect evolutionary constraints. Our results agree with the morphological separation of the Melipona into 4 subgenera, suggesting that they must be independent evolutionary lineages.


Assuntos
Abelhas/classificação , Abelhas/genética , Mapeamento Cromossômico , Análise Citogenética , Sequências Repetitivas de Ácido Nucleico/genética , Animais , Cromatina , Cromossomos de Insetos/genética , Diploide , Heterocromatina , Cariotipagem , Filogenia
3.
PLoS One ; 7(7): e42278, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848754

RESUMO

Henochilus wheatlandii, the only species of this genus, is critically endangered and was considered extinct for over a century. The rediscovery of this fish in 1996 made it possible to study its phylogenetic relationships with other species in the subfamily Bryconinae. The aim of this study was to characterise the karyotype of H. wheatlandii. Standard staining, C-positive heterochromatin and nucleolar organiser region (NOR) banding, chromomycin A(3) staining, and fluorescent in situ hybridisation (FISH) using 5S rDNA and 18S rDNA probes were conducted on nineteen specimens collected in the Santo Antonio River, a sub-basin of the Doce River in Ferros municipality, Minas Gerais State, Brazil. Henochilus wheatlandii shared the same diploid number and chromosome morphology as other species of Bryconinae. However, its heterochromatin distribution patterns, NOR localisation, and FISH patterns revealed a cytogenetic profile unique among Neotropical Bryconinae, emphasizing the evolutionary uniqueness of this threatened species.


Assuntos
Characidae/genética , Espécies em Perigo de Extinção , Cariótipo , Mudança Social , Animais , Brasil , Characidae/classificação , Feminino , Masculino , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...