Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 488(7413): 652-5, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22902501

RESUMO

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by using the pluripotency factors Oct4, Sox2, Klf4 and c-Myc (together referred to as OSKM). iPSC reprogramming erases somatic epigenetic signatures­as typified by DNA methylation or histone modification at silent pluripotency loci­and establishes alternative epigenetic marks of embryonic stem cells (ESCs). Here we describe an early and essential stage of somatic cell reprogramming, preceding the induction of transcription at endogenous pluripotency loci such as Nanog and Esrrb. By day 4 after transduction with OSKM, two epigenetic modification factors necessary for iPSC generation, namely poly(ADP-ribose) polymerase-1 (Parp1) and ten-eleven translocation-2 (Tet2), are recruited to the Nanog and Esrrb loci. These epigenetic modification factors seem to have complementary roles in the establishment of early epigenetic marks during somatic cell reprogramming: Parp1 functions in the regulation of 5-methylcytosine (5mC) modification, whereas Tet2 is essential for the early generation of 5-hydroxymethylcytosine (5hmC) by the oxidation of 5mC (refs 3,4). Although 5hmC has been proposed to serve primarily as an intermediate in 5mC demethylation to cytosine in certain contexts, our data, and also studies of Tet2-mutant human tumour cells, argue in favour of a role for 5hmC as an epigenetic mark distinct from 5mC. Consistent with this, Parp1 and Tet2 are each needed for the early establishment of histone modifications that typify an activated chromatin state at pluripotency loci, whereas Parp1 induction further promotes accessibility to the Oct4 reprogramming factor. These findings suggest that Parp1 and Tet2 contribute to an epigenetic program that directs subsequent transcriptional induction at pluripotency loci during somatic cell reprogramming.


Assuntos
Reprogramação Celular , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Dioxigenases , Éxons/genética , Fibroblastos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Íntrons/genética , Fator 4 Semelhante a Kruppel , Camundongos , Proteína Homeobox Nanog , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
2.
Cell ; 129(4): 723-33, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17512406

RESUMO

Transcriptional activation of the nuclear receptor RAR by retinoic acid (RA) often leads to inhibition of cell growth. However, in some tissues, RA promotes cell survival and hyperplasia, activities that are unlikely to be mediated by RAR. Here, we show that, in addition to functioning through RAR, RA activates the "orphan" nuclear receptor PPARbeta/delta, which, in turn, induces the expression of prosurvival genes. Partitioning of RA between the two receptors is regulated by the intracellular lipid binding proteins CRABP-II and FABP5. These proteins specifically deliver RA from the cytosol to nuclear RAR and PPARbeta/delta, respectively, thereby selectively enhancing the transcriptional activity of their cognate receptors. Consequently, RA functions through RAR and is a proapoptotic agent in cells with high CRABP-II/FABP5 ratio, but it signals through PPARbeta/delta and promotes survival in cells that highly express FABP5. Opposing effects of RA on cell growth thus emanate from alternate activation of two different nuclear receptors.


Assuntos
Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Receptores do Ácido Retinoico/metabolismo , Tretinoína/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Queratinócitos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/fisiopatologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/fisiopatologia , Camundongos , PPAR beta/efeitos dos fármacos , PPAR beta/metabolismo , Receptores do Ácido Retinoico/efeitos dos fármacos , Receptores do Ácido Retinoico/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...