Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3757-3760, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892053

RESUMO

Multiple Sclerosis (MS) is the most common cause, (after trauma) of neurological disability in young adults in Western countries. While several Magnetic Resonance Imaging (MRI) studies have demonstrated a strong association between the presence of cortical grey matter atrophy and the progression of neurological impairment in MS patients, the neurobiological substrates of cortical atrophy in MS, and in particular its relationship with white matter (WM) and cortical lesions, remain unknown. The aim of this study was to investigate the interplay between cortical atrophy and different types of lesions at Ultra-High Field (UHF) 7 T MRI, including cortical lesions and lesions with a susceptibility rim (a feature which histopathological studies have associated with impaired remyelination and progressive tissue destruction). We combined lesion characterization with a recent machine learning (ML) framework which includes explainability, and we were able to predict cortical atrophy in MS from a handful of lesion-related features extracted from 7 T MR imaging. This highlights not only the importance of UHF MRI for accurately evaluating intracortical and rim lesion load, but also the differential contributions that these types of lesions may bring to determine disease evolution and severity. Also, we found that a small subset of features [WM lesion volume (not considering rim lesions), patient age and WM lesion count (not considering rim lesions), intracortical lesion volume] carried most of the prediction power. Interestingly, an almost opposite pattern emerged when contrasting cortical with WM lesion load: WM lesion load is most important when it is small, whereas cortical lesion load behaves in the opposite way.Clinical Relevance- Our results suggest that disconnection and axonal degeneration due to WM lesions and local cortical demyelination are the main factors determining cortical thinning. These findings further elucidate the complexity of MS pathology across the whole brain and the need for both statistical and mechanistic approaches to understanding the etiopathogenesis of lesions.


Assuntos
Esclerose Múltipla , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Adulto Jovem
3.
Otol Neurotol ; 22(1): 33-41, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11314713

RESUMO

OBJECTIVE: The aim of these studies was to investigate the insertion properties and safety of a new intracochlear perimodiolar electrode array design (Contour). BACKGROUND: An electrode array positioned close to the neural elements could be expected to reduce stimulation thresholds and might potentially reduce channel interaction. METHODS: Two sequential studies were conducted. In study 1, the Contour electrode array was inserted in 12 human temporal bones. After cochlear surface preparation, the position of the array was noted and the basilar membrane was examined for insertion damage. On the basis of the outcome of this temporal bone study, study 2 investigated the Contour array, mounted on a Nucleus CI-24 M device and implanted in three adult patients. RESULTS: Study I showed that in 10 temporal bones, the Contour array was positioned close to the modiolus, and the basilar membrane was intact. In the two remaining bones, the arrays had pierced the basilar membrane and were positioned in the scala vestibuli apical to the penetration. Statistical analysis showed an equivalent probability of insertion-induced damage of the two array designs. In study 2, image analysis indicated that the Contour electrodes were positioned closer to the modiolus than the standard Nucleus straight array. Lower T and C levels, but higher impedance values, were recorded from electrodes close to the modiolus. Initial speech perception data showed that all patients gained useful open-set speech perception, two patients achieving scores of 100% on sentence material 3 months postoperatively. CONCLUSIONS: The temporal bone studies showed the Contour electrode array to be generally positioned closer to the modiolus than the standard Nucleus straight array, and to have an equivalent probability of causing insertion-induced damage.


Assuntos
Implantes Cocleares , Testes de Impedância Acústica , Adulto , Idoso , Membrana Basilar/cirurgia , Surdez/cirurgia , Estimulação Elétrica , Eletrodos , Desenho de Equipamento , Humanos , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Otológicos , Cuidados Pós-Operatórios , Cuidados Pré-Operatórios , Testes de Discriminação da Fala , Osso Temporal/cirurgia
4.
Am J Otol ; 21(2): 205-11, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10733185

RESUMO

OBJECTIVE: This study was conducted to evaluate the insertion properties and intracochlear trajectories of three perimodiolar electrode array designs and to compare these designs with the standard Cochlear/Melbourne array. BACKGROUND: Advantages to be expected of a perimodiolar electrode array include both a reduction in stimulus thresholds and an increase in dynamic range, resulting in a more localized stimulation pattern of the spiral ganglion cells, reduced power consumption, and, therefore, longer speech processor battery life. METHODS: The test arrays were implanted into human temporal bones. Image analysis was performed on a radiograph taken after the insertion. The cochleas were then histologically processed with the electrode array in situ, and the resulting sections were subsequently assessed for position of the electrode array as well as insertion-related intracochlear damage. RESULTS: All perimodiolar electrode arrays were inserted deeper and showed trajectories that were generally closer to the modiolus compared with the standard electrode array. However, although the precurved array designs did not show significant insertion trauma, the method of insertion needed improvement. After insertion of the straight electrode array with positioner, signs of severe insertion trauma in the majority of implanted cochleas were found. CONCLUSIONS: Although it was possible to position the electrode arrays close to the modiolus, none of the three perimodiolar designs investigated fulfilled satisfactorily all three criteria of being easy, safe, and atraumatic to implant.


Assuntos
Implante Coclear , Osso Temporal/cirurgia , Estimulação Elétrica/instrumentação , Eletrodos Implantados , Desenho de Equipamento , Humanos , Osso Temporal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...