Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 32(2): 225-35, 2001 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-11683993

RESUMO

During Drosophila visual system development, photoreceptors R7 and R8 project axons to targets in distinct layers of the optic lobe. We show here that the LAR receptor tyrosine phosphatase is required in the eye for correct targeting of R7 axons. In LAR mutants, R7 axons initially project to their correct target layer, but then retract to the R8 target layer. This targeting defect can be fully rescued by transgenic expression of LAR in R7, and partially rescued by expression of LAR in R8. The phosphatase domains of LAR are required for its activity in R7, but not in R8. These data suggest that LAR can act both as a receptor in R7, and as a ligand provided by R8. Genetic interactions implicate both Enabled and Trio in LAR signal transduction.


Assuntos
Axônios/fisiologia , Drosophila , Proteínas do Tecido Nervoso , Células Fotorreceptoras de Invertebrados/ultraestrutura , Proteínas Tirosina Fosfatases , Receptores de Superfície Celular/fisiologia , Animais , Drosophila/genética , Olho/ultraestrutura , Feminino , Expressão Gênica , Masculino , Mosaicismo , Mutação , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Receptores de Superfície Celular/genética , Proteínas Recombinantes , Retina/ultraestrutura , Transdução de Sinais , Transfecção , Transgenes , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/metabolismo
2.
Curr Biol ; 11(14): 1147-52, 2001 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-11509241

RESUMO

Proteins of the Hedgehog (Hh) family act as important developmental signals in a variety of species [1]. Hh proteins are synthesized as full-length precursors that are autocatalytically cleaved by their C-terminal domains to release the signaling N-terminal domains [2]. The addition of a cholesterol molecule to the C terminus of the signaling domain is concomitant with cleavage [3]. Vertebrate Sonic hedgehog (Shh) proteins have also been shown to acquire a fatty acid chain on the N-terminal cysteine of this domain [4], which is required for a subset of their in vivo functions [5, 6]. A mutation of the corresponding cysteine in Drosophila Hh transforms it into a dominant-negative protein [6]. We have identified a novel gene, sightless (sit), which is required for the activity of Drosophila Hh in the eye and wing imaginal discs and in embryonic segmentation. sit acts in the cells that produce Hh, but does not affect hh transcription, Hh cleavage, or the accumulation of Hh protein. sit encodes a conserved transmembrane protein with homology to a family of membrane-bound acyltransferases. The Sit protein could act by acylating Hh or by promoting other modifications or trafficking events necessary for its function.


Assuntos
Aciltransferases/metabolismo , Proteínas de Drosophila , Proteínas de Insetos/metabolismo , Acilação , Aciltransferases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Regulação da Expressão Gênica , Genes de Insetos , Proteínas Hedgehog , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/metabolismo , Homologia de Sequência de Aminoácidos , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
3.
Cell ; 105(3): 345-55, 2001 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-11348591

RESUMO

The inherited human disease tuberous sclerosis, characterized by hamartomatous tumors, results from mutations in either TSC1 or TSC2. We have characterized mutations in the Drosophila Tsc1 and Tsc2/gigas genes. Inactivating mutations in either gene cause an identical phenotype characterized by enhanced growth and increased cell size with no change in ploidy. Overall, mutant cells spend less time in G1. Coexpression of both Tsc1 and Tsc2 restricts tissue growth and reduces cell size and cell proliferation. This phenotype is modulated by manipulations in cyclin levels. In postmitotic mutant cells, levels of Cyclin E and Cyclin A are elevated. This correlates with a tendency for these cells to reenter the cell cycle inappropriately as is observed in the human lesions.


Assuntos
Ciclo Celular/fisiologia , Genes Supressores de Tumor/genética , Células Fotorreceptoras de Invertebrados/citologia , Proteínas/genética , Proteínas Repressoras/genética , Esclerose Tuberosa/genética , Animais , Tamanho Celular , Ciclina A/metabolismo , Ciclina E/metabolismo , DNA/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Citometria de Fluxo , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde , Humanos , Imuno-Histoquímica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Fenótipo , Células Fotorreceptoras de Invertebrados/fisiologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Ploidias , Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Esclerose Tuberosa/fisiopatologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor
4.
Development ; 128(9): 1519-29, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11290291

RESUMO

The posteriorly expressed signaling molecules Hedgehog and Decapentaplegic drive photoreceptor differentiation in the Drosophila eye disc, while at the anterior lateral margins Wingless expression blocks ectopic differentiation. We show here that mutations in axin prevent photoreceptor differentiation and lead to tissue overgrowth and that both these effects are due to ectopic activation of the Wingless pathway. In addition, ectopic Wingless signaling causes posterior cells to take on an anterior identity, reorienting the direction of morphogenetic furrow progression in neighboring wild-type cells. We also show that signaling by Decapentaplegic and Hedgehog normally blocks the posterior expression of anterior markers such as Eyeless. Wingless signaling is not required to maintain anterior Eyeless expression and in combination with Decapentaplegic signaling can promote its downregulation, suggesting that additional molecules contribute to anterior identity. Along the dorsoventral axis of the eye disc, Wingless signaling is sufficient to promote dorsal expression of the Iroquois gene mirror, even in the absence of the upstream factor pannier. However, Wingless signaling does not lead to ventral mirror expression, implying the existence of ventral repressors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Padronização Corporal , Proteínas de Transporte/metabolismo , Proteínas de Drosophila , Drosophila/embriologia , Olho/embriologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteína Axina , Proteínas Hedgehog , Proteínas de Insetos , Modelos Biológicos , Transdução de Sinais , Fatores de Transcrição , Proteína Wnt1
5.
Dev Biol ; 233(1): 122-36, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11319862

RESUMO

The Drosophila Hedgehog protein and its vertebrate counterpart Sonic hedgehog are required for a wide variety of patterning events throughout development. Hedgehog proteins are secreted from cells and undergo autocatalytic cleavage and cholesterol modification to produce a mature signaling domain. This domain of Sonic hedgehog has recently been shown to acquire an N-terminal acyl group in cell culture. We have investigated the in vivo role that such acylation might play in appendage patterning in mouse and Drosophila; in both species Hedgehog proteins define a posterior domain of the limb or wing. A mutant form of Sonic hedgehog that cannot undergo acylation retains significant ability to repattern the mouse limb. However, the corresponding mutation in Drosophila Hedgehog renders it inactive in vivo, although it is normally processed. Furthermore, overexpression of the mutant form has dominant negative effects on Hedgehog signaling. These data suggest that the importance of the N-terminal cysteine of mature Hedgehog in patterning appendages differs between species.


Assuntos
Padronização Corporal , Proteínas de Drosophila , Extremidades/embriologia , Proteínas de Insetos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Transativadores , Acilação , Animais , Cisteína/genética , Drosophila/embriologia , Evolução Molecular , Proteínas Hedgehog , Humanos , Camundongos , Mutação , Fenótipo , Polidactilia/etiologia , Transdução de Sinais , Especificidade da Espécie , Asas de Animais/embriologia
6.
Genes Dev ; 14(24): 3140-52, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11124806

RESUMO

The Wingless signaling pathway directs many developmental processes in Drosophila by regulating the expression of specific downstream target genes. We report here that the product of the trithorax group gene osa is required to repress such genes in the absence of the Wingless signal. The Wingless-regulated genes nubbin, Distal-less, and decapentaplegic and a minimal enhancer from the Ultrabithorax gene are misexpressed in osa mutants and repressed by ectopic Osa. Osa-mediated repression occurs downstream of the up-regulation of Armadillo but is sensitive both to the relative levels of activating Armadillo/Pangolin and repressing Groucho/Pangolin complexes present and to the responsiveness of the promoter to Wingless. Osa functions as a component of the Brahma chromatin-remodeling complex; other components of this complex are likewise required to repress Wingless target genes. These results suggest that altering the conformation of chromatin is an important mechanism by which Wingless signaling activates gene expression.


Assuntos
Proteínas de Ciclo Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/metabolismo , Animais , Proteínas do Domínio Armadillo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cromatina/ultraestrutura , Citosol/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/embriologia , Embrião não Mamífero , Elementos Facilitadores Genéticos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilase 1 , Histona Desacetilases , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Mutação , Fatores do Domínio POU , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteína Wnt1
8.
Cell ; 101(3): 271-81, 2000 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-10847682

RESUMO

Cells in the morphogenetic furrow of the Drosophila eye disc undergo a striking shape change immediately prior to their neuronal differentiation. We have isolated mutations in a novel gene, act up (acu), that is required for this shape change. acu encodes a homolog of yeast cyclase-associated protein, which sequesters monomeric actin; we show that acu is required to prevent actin filament polymerization in the eye disc. In contrast, profilin promotes actin filament polymerization, acting epistatically to acu. However, both acu and profilin are required to prevent premature Hedgehog-induced photoreceptor differentiation ahead of the morphogenetic furrow. These findings suggest that dynamic changes in actin filaments alter cell shape to control the movement of signals that coordinate a wave of differentiation.


Assuntos
Actinas/metabolismo , Proteínas Contráteis , Proteínas de Drosophila , Olho/metabolismo , Genes Letais , Proteínas de Insetos/metabolismo , Células Fotorreceptoras de Invertebrados/citologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Diferenciação Celular , Tamanho Celular , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiologia , Olho/embriologia , Feminino , Proteínas Hedgehog , Humanos , Proteínas de Insetos/genética , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Morfogênese , Polímeros , Profilinas , Homologia de Sequência de Aminoácidos
9.
Mol Cell Biol ; 20(13): 4736-44, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10848599

RESUMO

We have previously shown that the Ste20 kinase encoded by misshapen (msn) functions upstream of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase module in Drosophila. msn is required to activate the Drosophila JNK, Basket (Bsk), to promote dorsal closure of the embryo. A mammalian homolog of Msn, Nck interacting kinase, interacts with the SH3 domains of the SH2-SH3 adapter protein Nck. We now show that Msn likewise interacts with Dreadlocks (Dock), the Drosophila homolog of Nck. dock is required for the correct targeting of photoreceptor axons. We have performed a structure-function analysis of Msn in vivo in Drosophila in order to elucidate the mechanism whereby Msn regulates JNK and to determine whether msn, like dock, is required for the correct targeting of photoreceptor axons. We show that Msn requires both a functional kinase and a C-terminal regulatory domain to activate JNK in vivo in Drosophila. A mutation in a PXXP motif on Msn that prevents it from binding to the SH3 domains of Dock does not affect its ability to rescue the dorsal closure defect in msn embryos, suggesting that Dock is not an upstream regulator of msn in dorsal closure. Larvae with only this mutated form of Msn show a marked disruption in photoreceptor axon targeting, implicating an SH3 domain protein in this process; however, an activated form of Msn is not sufficient to rescue the dock mutant phenotype. Mosaic analysis reveals that msn expression is required in photoreceptors in order for their axons to project correctly. The data presented here genetically link msn to two distinct biological events, dorsal closure and photoreceptor axon pathfinding, and thus provide the first evidence that Ste20 kinases of the germinal center kinase family play a role in axonal pathfinding. The ability of Msn to interact with distinct classes of adapter molecules in dorsal closure and photoreceptor axon pathfinding may provide the flexibility that allows it to link to distinct upstream signaling systems.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Drosophila/embriologia , Embrião não Mamífero , Olho/embriologia , Olho/inervação , Olho/metabolismo , Gânglios dos Invertebrados/embriologia , Gânglios dos Invertebrados/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Prolina , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Relação Estrutura-Atividade , Quinases Ativadas por p21 , Domínios de Homologia de src
10.
Development ; 127(5): 1007-16, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10662640

RESUMO

The dorsoventral midline of the Drosophila eye disc is a source of signals that stimulate growth of the eye disc, define the point at which differentiation initiates, and direct ommatidial rotation in opposite directions in the two halves of the eye disc. This boundary region seems to be established by the genes of the iroquois complex, which are expressed in the dorsal half of the disc and inhibit fringe expression there. Fringe controls the activation of Notch and the expression of its ligands, with the result that Notch is activated only at the fringe expression boundary at the midline. The secreted protein Wingless activates the dorsal expression of the iroquois genes. We show here that pannier, which encodes a GATA family transcription factor expressed at the dorsal margin of the eye disc from embryonic stages on, acts upstream of wingless to control mirror and fringe expression and establish the dorsoventral boundary. Loss of pannier function leads to the formation of an ectopic eye field and the reorganization of ommatidial polarity, and ubiquitous pannier expression can abolish the eye field. Pannier is thus the most upstream element yet described in dorsoventral patterning of the eye disc.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/embriologia , Olho/embriologia , N-Acetilglucosaminiltransferases , Proteínas Proto-Oncogênicas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Padronização Corporal , Cruzamentos Genéticos , Drosophila melanogaster/genética , Embrião não Mamífero/fisiologia , Feminino , Genes de Insetos , Proteínas de Insetos/genética , Masculino , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Fatores de Transcrição/genética , Proteína Wnt1
11.
EMBO J ; 18(24): 7029-40, 1999 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-10601025

RESUMO

The yeast SWI/SNF complex and its Drosophila and mammalian homologs are thought to control gene expression by altering chromatin structure, but the mechanism and specificity of this process are not fully understood. The Drosophila osa gene, like yeast SWI1, encodes an AT-rich interaction (ARID) domain protein. We present genetic and biochemical evidence that Osa is a component of the Brahma complex, the Drosophila homolog of SWI/SNF. The ARID domain of Osa binds DNA without sequence specificity in vitro, but it is sufficient to direct transcriptional regulatory domains to specific target genes in vivo. Endogenous Osa appears to promote the activation of some of these genes. We show evidence that some Brahma-containing complexes do not contain Osa and that Osa is not required to localize Brahma to chromatin. These data suggest that Osa modulates the function of the Brahma complex.


Assuntos
Proteínas de Ciclo Celular , Cromatina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Regulação da Expressão Gênica , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Pareamento de Bases , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cromatina/ultraestrutura , Mapeamento Cromossômico , Cromossomos/genética , Cromossomos/fisiologia , Cromossomos/ultraestrutura , Proteínas de Ligação a DNA/genética , Drosophila melanogaster , Genes de Insetos , Cabeça , Sequências Reguladoras de Ácido Nucleico , Glândulas Salivares/fisiologia , Glândulas Salivares/ultraestrutura , Transativadores/genética , Transativadores/metabolismo , Asas de Animais
12.
Bioessays ; 21(10): 843-50, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10497334

RESUMO

Although the eyes of all organisms have a common function, visual perception, their structures and developmental mechanisms are quite diverse. Recent research on eye development in Drosophila has identified a set of putative transcription factors required for the earliest step of eye development, specification of the field of cells that will give rise to the eye. These factors appear to act in a hierarchy, although cross-regulation may amplify the eye fate decision or promote progression to the next step. Surprisingly, homologous proteins are also involved in vertebrate eye development, suggesting that this regulatory network was present in a primitive common ancestor and that it has been adapted to control visual organ formation in multiple species. The identification of genes acting upstream and downstream of these transcription factors will contribute to our understanding of the establishment of a developmental field, as well as of the divergence of regulatory pathways controlling the formation of eye structures.


Assuntos
Olho/crescimento & desenvolvimento , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Vertebrados
13.
Genes Dev ; 12(15): 2371-80, 1998 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-9694801

RESUMO

Dorsal closure in the Drosophila embryo occurs during the later stages of embryogenesis and involves changes in cell shape leading to the juxtaposition and subsequent adherence of the lateral epidermal primordia over the amnioserosa. Dorsal closure requires the activation of a conserved c-jun amino-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) module, as it is blocked by null mutations in JNK kinase [hemipterous (hep)] and JNK [basket (bsk)]. Drosophila JNK (DJNK) functions by phosphorylating and activating DJun, which in turn induces the transcription of decapentaplegic (dpp). We provide biochemical and genetic evidence that a Ste20-related kinase, misshapen (msn), functions upstream of hep and bsk to stimulate dorsal closure in the Drosophila embryo. Mammalian (NCK-interacting kinase [NIK]) and Caenorhabditis elegans (mig-15) homologs of msn have been identified; mig-15 is necessary for several developmental processes in C. elegans. These data suggest that msn, mig-15, and NIK are components of a signaling pathway that is conserved among flies, worms, and mammals to control developmentally regulated pathways.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Proteínas de Drosophila , Drosophila/embriologia , Drosophila/enzimologia , Proteínas Quinases Ativadas por Mitógeno , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Padronização Corporal/genética , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Sequência Conservada , Drosophila/genética , Ativação Enzimática , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase Quinases , Dados de Sequência Molecular , Mutação , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais
14.
Development ; 125(18): 3741-51, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9716539

RESUMO

Signaling by the secreted hedgehog, decapentaplegic and wingless proteins organizes the pattern of photoreceptor differentiation within the Drosophila eye imaginal disc; hedgehog and decapentaplegic are required for differentiation to initiate at the posterior margin and progress across the disc, while wingless prevents it from initiating at the lateral margins. Our analysis of these interactions has shown that initiation requires both the presence of decapentaplegic and the absence of wingless, which inhibits photoreceptor differentiation downstream of the reception of the decapentaplegic signal. However, wingless is unable to inhibit differentiation driven by activation of the epidermal growth factor receptor pathway. The effect of wingless is subject to regional variations in control, as the anterior margin of the disc is insensitive to wingless inhibition. The eyes absent and eyegone genes encode members of a group of nuclear proteins required to specify the fate of the eye imaginal disc. We show that both eyes absent and eyegone are required for normal activation of decapentaplegic expression at the posterior and lateral margins of the disc, and repression of wingless expression in presumptive retinal tissue. The requirement for eyegone can be alleviated by inhibition of the wingless signaling pathway, suggesting that eyegone promotes eye development primarily by repressing wingless. These results provide a link between the early specification and later differentiation of the eye disc.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila , Drosophila/embriologia , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas Proto-Oncogênicas/genética , Retina/crescimento & desenvolvimento , Fator de Crescimento Transformador beta/genética , Animais , Diferenciação Celular , Drosophila/genética , Embrião não Mamífero/embriologia , Proteínas do Olho/biossíntese , Proteínas de Insetos/biossíntese , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas/biossíntese , Retina/citologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/biossíntese , Proteína Wnt1
16.
Genes Dev ; 11(15): 1949-62, 1997 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-9271118

RESUMO

In Drosophila, pattern formation at multiple stages of embryonic and imaginal development depends on the same intercellular signaling pathways. We have identified a novel gene, eyelid (eld), which is required for embryonic segmentation, development of the notum and wing margin, and photoreceptor differentiation. In these tissues, eld mutations have effects opposite to those caused by wingless (wg) mutations. eld encodes a widely expressed nuclear protein with a region homologous to a novel family of DNA-binding domains. Based on this homology and on the phenotypic analysis, we suggest that Eld could act as a transcription factor antagonistic to the Wg pathway.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Drosophila/embriologia , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais/fisiologia , Transativadores/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Padronização Corporal/genética , Diferenciação Celular , Clonagem Molecular , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/fisiologia , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Células Fotorreceptoras de Invertebrados/química , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Proteínas Recombinantes de Fusão , Mapeamento por Restrição , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/análise , Fatores de Transcrição/fisiologia , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1
17.
Gene ; 186(1): 119-25, 1997 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-9047354

RESUMO

We have identified a novel protein kinase encoded by the misshapen gene, which is required for the normal shape and orientation of Drosophila photoreceptor cells. misshapen is also expressed in the embryonic mesoderm, pole plasm and other sites of cell shape change or movement. We propose that msn may act in a signal transduction pathway leading to cytoskeletal re-arrangements.


Assuntos
Movimento Celular/genética , Drosophila/embriologia , Drosophila/genética , Olho/embriologia , Proteínas Quinases/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/citologia , Desenvolvimento Embrionário e Fetal/genética , Olho/patologia , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Células Fotorreceptoras de Invertebrados/patologia , Proteínas Quinases/biossíntese , Proteínas Quinases/fisiologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transcrição Gênica
18.
Mech Dev ; 56(1-2): 17-24, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8798144

RESUMO

The Drosophila glass gene is required for the differentiation and survival of photoreceptors in the compound eye, ocelli and larval photoreceptor organ, glass encodes a zinc finger protein which can activate transcription in cell culture and is likely to act by regulating the expression of other genes. We have shown that it directly or indirectly controls the expression of approximately 25% of all enhancer trap lines expressed in the eye disc. glass gene activity is required to activate 19% of the lines, some of which express beta-galactosidase in photoreceptor subtype-specific patterns, and to repress 6%. The phenotype of eye discs doubly mutant for glass and the homeobox gene rough suggests that glass is required for subtype specification and for recruitment of cells to the ommatidial cluster.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Associadas aos Microtúbulos , Animais , Drosophila melanogaster/genética , Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Fenótipo , Células Fotorreceptoras/fisiologia , Fatores de Transcrição/fisiologia
19.
Development ; 121(11): 3519-27, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8582266

RESUMO

Differentiation of the Drosophila eye imaginal disc is an asynchronous, repetitive process which proceeds across the disc from posterior to anterior. Its propagation correlates with the expression of decapentaplegic at the front of differentiation, in the morphogenetic furrow. Both differentiation and decapentaplegic expression are maintained by Hedgehog protein secreted by the differentiated cells posterior to the furrow. However, their initiation at the posterior margin occurs prior to hedgehog expression by an unknown mechanism. We show here that the wingless gene contributes to the correct spatial localization of initiation. Initiation of the morphogenetic furrow is restricted to the posterior margin by the presence of wingless at the lateral margins; removal of wingless allows lateral initiation. Ectopic expression of wingless at the posterior margin can also inhibit normal initiation. In addition, the presence of wingless in the center of the disc can prevent furrow progression. These effects of wingless are achieved without altering the expression of decapentaplegic.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Drosophila/genética , Ectoderma/fisiologia , Genes de Insetos , Células Fotorreceptoras de Invertebrados/embriologia , Proteínas Proto-Oncogênicas/genética , Animais , Diferenciação Celular/fisiologia , Expressão Gênica , Imuno-Histoquímica , Hormônios de Inseto/genética , Morfogênese/genética , Morfogênese/fisiologia , Fator de Crescimento Transformador beta/genética , Transgenes , Proteína Wnt1
20.
Development ; 121(9): 2835-45, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7555710

RESUMO

Differentiation in the Drosophila eye imaginal disc traverses the disc as a wave moving from posterior to anterior. The propagation of this wave is driven by hedgehog protein secreted by the differentiated cells in the posterior region of the disc. Hedgehog induces decapentaplegic expression at the front of differentiation, in the morphogenetic furrow. We have identified a gene, shortsighted, which is expressed in a hedgehog-dependent stripe in the undifferentiated cells just anterior to the furrow and which appears to be involved in the transmission of the differentiation-inducing signal; a reduction in shortsighted function leads to a delay in differentiation and to a loss of photoreceptors in the adult. shortsighted is also required for a morphogenetic movement in the brain that reorients the second optic lobe relative to the first. shortsighted encodes a cytoplasmic leucine zipper protein with homology to a mouse gene, TSC-22, which is transcriptionally induced in response to TGF-beta.


Assuntos
Proteínas de Drosophila , Drosophila/genética , Ectoderma/fisiologia , Olho/embriologia , Genes de Insetos , Hormônios de Inseto , Fator de Crescimento Transformador beta/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Drosophila/embriologia , Imuno-Histoquímica , Zíper de Leucina , Camundongos , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Morfogênese/genética , Células Fotorreceptoras de Invertebrados/embriologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...