Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069280

RESUMO

A source of Brønsted acid centers, generated on the surface of two mesoporous silica supports of different structures (SBA-15 and MCF), was 3-(trihydroxysilyl)-1-propanesufonic acid (TPS). The materials obtained were characterized and applied as catalysts for the oxidative desulfurization of dibenzothiophene (DBT) with hydrogen peroxide as a model ODS (oxidative desulfurization) process. The properties of the materials were examined via nitrogen physisorption, XRD (X-ray Diffraction) and elemental analysis showing the preservation of the support structure after modification with organosilane species. Due to the aggregation of catalyst particles in the reaction mixture, the SBA-15 based catalyst was not very effective in DBT oxidation. Contrary, TPS/MCF catalyst exhibited a very good activity (almost total conversion of DBT after 1 h in optimized reaction conditions) and stability in dibenzothiophene oxidation in mild reaction conditions.


Assuntos
Dióxido de Silício , Tiofenos , Oxirredução , Tiofenos/química
2.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768577

RESUMO

The aim of this study was to get insight into the pathway of the acetaldehyde formation from ethanol (the rate-limiting step in the production of 1,3-butadiene) on Cu-SBA-15 and Cu-MnSBA-15 mesoporous molecular sieves. Physicochemical properties of the catalysts were investigated by XRD, N2 ads/des, Uv-vis, XPS, EPR, pyridine adsorption combined with FTIR, 2-propanol decomposition and 2,5-hexanedione cyclization and dehydration test reactions. Ethanol dehydrogenation to acetaldehyde (without and with oxygen) was studied in a flow system using the FTIR technique. In particular, the effect of Lewis acid and basic (Lewis and BrØnsted) sites, and the oxygen presence in the gas reaction mixture with ethanol on the activity and selectivity of copper catalysts, was assessed and discussed. Two different reaction pathways have been proposed depending on the reaction temperature and the presence or absence of oxygen in the flow of the reagents (via ethoxy intermediate way at 593 K, in ethanol flow, or ethoxide intermediate way at 473 K in the presence of ethanol and oxygen in the reaction mixture).


Assuntos
Cobre , Etanol , Etanol/química , Cobre/química , Oxigênio , Acetaldeído
3.
Materials (Basel) ; 15(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35888344

RESUMO

Herein, the impact of cerium species loaded on mesoporous silica of MCF type on the state and catalytic activity of ruthenium species was studied. Up to 20 wt.% of cerium was incorporated on the silica surface, whereas the same 1 wt.% of Ru loading was applied. The samples prepared were examined by low temperature N2 adsorption/desorption, XRD, XRF, ICP-OES, XPS and H2 chemisorption. The catalytic activity of the materials obtained was investigated in the transformation of levulinic acid to γ-valerolactone. It was documented that the presence of Ce favored an increase in the dispersion of ruthenium species, which had a positive impact on the hydrogenation activity for up to 10 wt.% of Ce. Nevertheless, the highest cerium loading had a negative influence on the textural parameters of the support.

4.
ChemSusChem ; 15(7): e202102012, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35188330

RESUMO

Copper-containing materials based on Ce- and Ca-Nb-mesocellular foam (MCF) silica supports are prepared, characterized and applied as catalysts for gas-phase reductive condensation of acetone to produce methyl isobutyl ketone (MIBK). The properties of the materials, the interaction of metal species, and their role in the catalytic process are examined by nitrogen physisorption, XRD, XPS, CO2 -TPD, H2 -TPR, and chemisorption of NO and pyridine combined with FTIR spectroscopy. A synergistic interaction of Cu2+ , Cu0 , and CeO2 species incorporated in the MCF support enable the Cu/Ce-MCF catalyst to yield 34 % of acetone conversion with over 90 % MIBK selectivity at 250 °C. Moreover, this high catalyst selectivity is maintained during operation for 24 h despite a decline in catalyst activity. The catalytic performance is superior to that of hydroxyapatite-supported Cu and similar previously reported Pd-containing catalysts.


Assuntos
Acetona , Cobre , Aerossóis , Catálise , Cobre/química , Metil n-Butil Cetona , Dióxido de Silício/química
5.
Materials (Basel) ; 14(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885381

RESUMO

In this paper, the optimization of the synthesis of catalysts based on acidic mesoporous silica of the SBA-15 type by post-synthesis immobilization of 3-(trihydroxysilyl)-1-propanesulfonic acid (TPS) under increased pressure up to 20 bar is reported. Sample structures and composition were examined by XRD measurement, low-temperature N2 adsorption/desorption and elemental analysis. The catalytic activities of the materials obtained were determined in both gas and liquid phase processes, i.e., by esterification of acetic acid and glycerol dehydration, respectively. The optimum pressure for modification leading to the highest number of acidic sites was found to be 10 bar. The final material was very active and stable in liquid phase processes; however, the stability in the gas-phase process was unsatisfactory due to the loss of sulphonic species from the catalyst surface.

6.
Materials (Basel) ; 14(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885533

RESUMO

The design of different bimetallic catalysts is an important area of catalytic research in the context of their possible applications in the cascade processes, meeting the requirements of the so-called green chemistry. In this study, such catalysts were obtained by the incorporation of magnesium species into spherical silica, which was in the next step covered with porous silica and modified with ruthenium species. The structure and chemical composition of the materials obtained were determined by XRD measurements, low temperature N2 adsorption/desorption, SEM, ICP-OES and XPS methods. The catalytic activities of materials obtained were tested in 2-propanol decomposition and hydrogenation of levulinic acid. The results obtained confirmed the successful coverage of nanospheres with porous silica. A much higher concentration of ruthenium species was found on the surface of the catalysts than in their bulk. The opposite relationship was observed for magnesium species. The modification of nanospheres with silica had a positive effect on the catalytic activity of the materials obtained. For the most active sample, i.e., Ru/NS/3Mg/NS, 49% of levulinic acid conversion in its hydrogenation process was reported with γ-valerolactone as the only product.

7.
Dalton Trans ; 49(28): 9781-9794, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32626866

RESUMO

Mesoporous silica of the SBA-15 type was used as a support for basic active centers generated by the incorporation of calcium species and (3-aminopropylo)trimethoxysilane (APTMS) or imidazole. The samples were characterized by low temperature N2 adsorption/desorption, XRD, XPS, FTIR spectroscopy, CO2-TPD, and elemental and thermal analyses. Calcium containing samples were analysed in 2,5-hexanedione dehydration and cyclization, while the activities of all the samples were examined in Knoevenagel condensation between benzaldehyde and malononitrile. It was demonstrated that the calcium species interacted with a silica support increasing the stabilization of organosilanes on the SBA-15 surface. A very high activity of the catalysts in Knoevenagel condensation indicated a synergistic interaction between calcium and the organic modifiers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...