Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Mater ; 34(27): e2200354, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35512110

RESUMO

Targeted doping of grain boundaries is widely pursued as a pathway for combating thermal instabilities in nanocrystalline metals. However, certain dopants predicted to produce grain-boundary-segregated nanocrystalline configurations instead form small nanoprecipitates at elevated temperatures that act to kinetically inhibit grain growth. Here, thermodynamic modeling is implemented to select the Mo-Au system for exploring the interplay between thermodynamic and kinetic contributions to nanostructure stability. Using nanoscale multilayers and in situ transmission electron microscopy thermal aging, evolving segregation states and the corresponding phase transitions are mapped with temperature. The microstructure is shown to evolve through a transformation at lower homologous temperatures (<600 °C) where solute atoms cluster and segregate to the grain boundaries, consistent with predictions from thermodynamic models. An increase in temperature to 800 °C is accompanied by coarsening of the grain structure via grain boundary migration but with multiple pinning events uncovered between migrating segments of the grain boundary and local solute clustering. Direct comparison between the thermodynamic predictions and experimental observations of microstructure evolution thus demonstrates a transition from thermodynamically preferred to kinetically inhibited nanocrystalline stability and provides a general framework for decoupling contributions to complex stability transitions while simultaneously targeting a dominant thermal stability regime.

3.
Sci Rep ; 8(1): 2897, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440652

RESUMO

The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity via grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...