Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36107617

RESUMO

Puberty is associated with transient insulin resistance that normally recedes at the end of puberty; however, in overweight children, insulin resistance persists, leading to an increased risk of type 2 diabetes. The mechanisms whereby pancreatic ß cells adapt to pubertal insulin resistance, and how they are affected by the metabolic status, have not been investigated. Here, we show that puberty is associated with a transient increase in ß cell proliferation in rats and humans of both sexes. In rats, ß cell proliferation correlated with a rise in growth hormone (GH) levels. Serum from pubertal rats and humans promoted ß cell proliferation, suggesting the implication of a circulating factor. In pubertal rat islets, expression of genes of the GH/serotonin (5-hydroxytryptamine [5-HT]) pathway underwent changes consistent with a proliferative effect. Inhibition of the pro-proliferative 5-HT receptor isoform HTR2B blocked the increase in ß cell proliferation in pubertal islets ex vivo and in vivo. Peripubertal metabolic stress blunted ß cell proliferation during puberty and led to altered glucose homeostasis later in life. This study identifies a role of GH/GH receptor/5-HT/HTR2B signaling in the control of ß cell mass expansion during puberty and identifies a mechanistic link between pubertal obesity and the risk of developing type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Criança , Humanos , Masculino , Feminino , Ratos , Animais , Adulto , Serotonina/metabolismo , Maturidade Sexual , Homeostase , Proliferação de Células , Glucose/metabolismo
2.
Sci Rep ; 11(1): 11283, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050242

RESUMO

The potential to treat diabetes by increasing beta-cell mass is driving a major effort to identify beta-cell mitogens. Demonstration of mitogen activity in human beta cells is frequently performed in ex vivo assays. However, reported disparities in the efficacy of beta-cell mitogens led us to investigate the sources of this variability. We studied 35 male (23) and female (12) human islet batches covering a range of donor ages and BMI. Islets were kept intact or dispersed into single cells and cultured in the presence of harmine, glucose, or heparin-binding epidermal growth factor-like growth factor (HB-EGF), and subsequently analyzed by immunohistochemistry or flow cytometry. Proliferating cells were identified by double labeling with EdU and Ki67 and glucagon, c-peptide or Nkx6.1, and cytokeratin-19 to respectively label alpha, beta, and ductal cells. Harmine and HB-EGF stimulated human beta-cell proliferation, but the effect of glucose was dependent on the assay and the donor. Harmine potently stimulated alpha-cell proliferation and both harmine and HB-EGF increased proliferation of insulin- and glucagon-negative cells, including cytokeratin 19-positive cells. Given the abundance of non-beta cells in human islet preparations, our results suggest that assessment of beta-cell mitogens requires complementary approaches and rigorous identification of cell identity using multiple markers.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Mitógenos/farmacologia , Peptídeo C/metabolismo , Divisão Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Feminino , Glucagon/metabolismo , Glucose/metabolismo , Harmina/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/farmacologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/fisiologia , Masculino , Mitógenos/imunologia , Mitógenos/metabolismo , Ductos Pancreáticos/metabolismo , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos
3.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33543237

RESUMO

The free fatty-acid receptors FFAR1 (GPR40) and FFAR4 (GPR120) are implicated in the regulation of insulin secretion and insulin sensitivity, respectively. Although GPR120 and GPR40 share similar ligands, few studies have addressed possible interactions between these 2 receptors in the control of glucose homeostasis. Here we generated mice deficient in gpr120 (Gpr120KO) or gpr40 (Gpr40KO), alone or in combination (Gpr120/40KO), and metabolically phenotyped male and female mice fed a normal chow or high-fat diet. We assessed insulin secretion in isolated mouse islets exposed to selective GPR120 and GPR40 agonists singly or in combination. Following normal chow feeding, body weight and energy intake were unaffected by deletion of either receptor, although fat mass increased in Gpr120KO females. Fasting blood glucose levels were mildly increased in Gpr120/40KO mice and in a sex-dependent manner in Gpr120KO and Gpr40KO animals. Oral glucose tolerance was slightly reduced in male Gpr120/40KO mice and in Gpr120KO females, whereas insulin secretion and insulin sensitivity were unaffected. In hyperglycemic clamps, the glucose infusion rate was lower in male Gpr120/40KO mice, but insulin and c-peptide levels were unaffected. No changes in glucose tolerance were observed in either single or double knock-out animals under high-fat feeding. In isolated islets from wild-type mice, the combination of selective GPR120 and GPR40 agonists additively increased insulin secretion. We conclude that while simultaneous activation of GPR120 and GPR40 enhances insulin secretion ex vivo, combined deletion of these 2 receptors only minimally affects glucose homeostasis in vivo in mice.


Assuntos
Glucose/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Feminino , Deleção de Genes , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Homeostase/genética , Insulina/metabolismo , Secreção de Insulina/genética , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Mol Metab ; 45: 101166, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484949

RESUMO

OBJECTIVE: Maintenance of glucose homeostasis requires the precise regulation of hormone secretion from the endocrine pancreas. Free fatty acid receptor 4 (FFAR4/GPR120) is a G protein-coupled receptor whose activation in islets of Langerhans promotes insulin and glucagon secretion and inhibits somatostatin secretion. However, the contribution of individual islet cell types (α, ß, and δ cells) to the insulinotropic and glucagonotropic effects of GPR120 remains unclear. As gpr120 mRNA is enriched in somatostatin-secreting δ cells, we hypothesized that GPR120 activation stimulates insulin and glucagon secretion via inhibition of somatostatin release. METHODS: Glucose tolerance tests were performed in mice after administration of selective GPR120 agonist Compound A. Insulin, glucagon, and somatostatin secretion were measured in static incubations of isolated mouse islets in response to endogenous (ω-3 polyunsaturated fatty acids) and/or pharmacological (Compound A and AZ-13581837) GPR120 agonists. The effect of Compound A on hormone secretion was tested further in islets isolated from mice with global or somatostatin cell-specific knock-out of gpr120. Gpr120 expression was assessed in pancreatic sections by RNA in situ hybridization. Cyclic AMP (cAMP) and calcium dynamics in response to pharmacological GPR120 agonists were measured specifically in α, ß, and δ cells in intact islets using cAMPER and GCaMP6 reporter mice, respectively. RESULTS: Acute exposure to Compound A increased glucose tolerance, circulating insulin, and glucagon levels in vivo. Endogenous and/or pharmacological GPR120 agonists reduced somatostatin secretion in isolated islets and concomitantly demonstrated dose-dependent potentiation of glucose-stimulated insulin secretion and arginine-stimulated glucagon secretion. Gpr120 was enriched in δ cells. Pharmacological GPR120 agonists reduced cAMP and calcium levels in δ cells but increased these signals in α and ß cells. Compound A-mediated inhibition of somatostatin secretion was insensitive to pertussis toxin. The effect of Compound A on hormone secretion was completely absent in islets from mice with either global or somatostatin cell-specific deletion of gpr120 and partially reduced upon blockade of somatostatin receptor signaling by cyclosomatostatin. CONCLUSIONS: Inhibitory GPR120 signaling in δ cells contributes to both insulin and glucagon secretion in part by mitigating somatostatin release.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Secretoras de Somatostatina/metabolismo , Animais , Feminino , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Homeostase , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Somatostatina/metabolismo
5.
Am J Physiol Endocrinol Metab ; 317(2): E234-E243, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31013146

RESUMO

The pancreatic ß-cell responds to changes in the nutrient environment to maintain glucose homeostasis by adapting its function and mass. Nutrients can act directly on the ß-cell and also indirectly through the brain via autonomic nerves innervating islets. Despite the importance of the brain-islet axis in insulin secretion, relatively little is known regarding its involvement in ß-cell proliferation. We previously demonstrated that prolonged infusions of nutrients in rats provoke a dramatic increase in ß-cell proliferation in part because of the direct action of nutrients. Here, we addressed the contribution of the autonomic nervous system. In isolated islets, muscarinic stimulation increased, whereas adrenergic stimulation decreased, glucose-induced ß-cell proliferation. Blocking α-adrenergic receptors reversed the effect of epinephrine on glucose + nonesterified fatty acids (NEFA)-induced ß-cell proliferation, whereas activation of ß-adrenergic receptors was without effect. Infusion of glucose + NEFA toward the brain stimulated ß-cell proliferation, and this effect was abrogated following celiac vagotomy. The increase in ß-cell proliferation following peripheral infusions of glucose + NEFA was not inhibited by vagotomy or atropine treatment but was blocked by coinfusion of epinephrine. We conclude that ß-cell proliferation is stimulated by parasympathetic and inhibited by sympathetic signals. Whereas glucose + NEFA in the brain stimulates ß-cell proliferation through the vagus nerve, ß-cell proliferation in response to systemic nutrient excess does not involve parasympathetic signals but may be associated with decreased sympathetic tone.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Proliferação de Células , Células Secretoras de Insulina/fisiologia , Envelhecimento/fisiologia , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Glicemia/metabolismo , Carbacol/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Epinefrina/farmacologia , Ácidos Graxos não Esterificados/farmacologia , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos Lew
7.
Nat Med ; 23(12): 1405-1415, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058717

RESUMO

Maladaptive wound healing responses to chronic tissue injury result in organ fibrosis. Fibrosis, which entails excessive extracellular matrix (ECM) deposition and tissue remodeling by activated myofibroblasts, leads to loss of proper tissue architecture and organ function; however, the molecular mediators of myofibroblast activation have yet to be fully identified. Here we identify soluble ephrin-B2 (sEphrin-B2) as a new profibrotic mediator in lung and skin fibrosis. We provide molecular, functional and translational evidence that the ectodomain of membrane-bound ephrin-B2 is shed from fibroblasts into the alveolar airspace after lung injury. Shedding of sEphrin-B2 promotes fibroblast chemotaxis and activation via EphB3 and/or EphB4 receptor signaling. We found that mice lacking ephrin-B2 in fibroblasts are protected from skin and lung fibrosis and that a disintegrin and metalloproteinase 10 (ADAM10) is the major ephrin-B2 sheddase in fibroblasts. ADAM10 expression is increased by transforming growth factor (TGF)-ß1, and ADAM10-mediated sEphrin-B2 generation is required for TGF-ß1-induced myofibroblast activation. Pharmacological inhibition of ADAM10 reduces sEphrin-B2 levels in bronchoalveolar lavage and prevents lung fibrosis in mice. Consistent with the mouse data, ADAM10-sEphrin-B2 signaling is upregulated in fibroblasts from human subjects with idiopathic pulmonary fibrosis. These results uncover a new molecular mechanism of tissue fibrogenesis and identify sEphrin-B2, its receptors EphB3 and EphB4 and ADAM10 as potential therapeutic targets in the treatment of fibrotic diseases.


Assuntos
Proteína ADAM10/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Efrina-B2/metabolismo , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , Proteínas de Membrana/fisiologia , Miofibroblastos/fisiologia , Dermatopatias/genética , Pele/patologia , Animais , Células Cultivadas , Exocitose/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/patologia , Transporte Proteico/genética , Pele/metabolismo , Dermatopatias/metabolismo , Dermatopatias/patologia
8.
Diabetologia ; 60(5): 879-888, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28078385

RESUMO

AIMS/HYPOTHESIS: The mechanisms underlying pancreatic islet mass expansion have attracted considerable interest as potential therapeutic targets to prevent or delay the onset of type 2 diabetes. While several factors promoting beta cell proliferation have been identified, in the context of nutrient excess the roles of glucose or NEFA in relation to insulin resistance remain unclear. Here we tested the hypothesis that glucose and NEFA synergistically and reversibly promote beta cell proliferation in the context of nutrient-induced insulin resistance. METHODS: Using 72 h infusions of glucose (GLU) or the oleate-enriched lipid emulsion ClinOleic (CLI), singly or in combination, we assessed beta cell proliferation, islet mass and insulin sensitivity in male Lewis rats. The effects of nutrients and endogenous circulating factors were examined in isolated and transplanted islets. Reversibility was studied 3 and 6 days after the end of the infusion. RESULTS: GLU infusions modestly stimulated beta cell proliferation, CLI alone had no effect and GLU+CLI infusions markedly stimulated beta cell proliferation. Insulin sensitivity was equally decreased in GLU and GLU+CLI infusions. GLU+CLI infusions also stimulated beta cell proliferation in islets transplanted under the kidney capsule, albeit to a lesser extent compared with endogenous islets. Ex vivo, the combination of glucose and NEFA enhanced beta cell proliferation in rat and human islets independently from secreted insulin, and serum from GLU+CLI-infused rats potentiated the effect of glucose. Glucose tolerance, beta cell proliferation and islet mass were all restored to normal levels 6 days after termination of the infusion. CONCLUSIONS/INTERPRETATION: Glucose and NEFA synergistically and reversibly promote beta cell proliferation in part via direct action on the beta cell and independently from secreted insulin.


Assuntos
Ácidos Graxos/farmacologia , Glucose/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Ácidos Graxos/administração & dosagem , Glucose/administração & dosagem , Técnica Clamp de Glucose , Técnicas In Vitro , Masculino , Distribuição Aleatória , Ratos
9.
Mol Metab ; 5(10): 988-996, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27689011

RESUMO

OBJECTIVE: G protein-coupled receptor (GPCR) signaling regulates insulin secretion and pancreatic ß cell-proliferation. While much knowledge has been gained regarding how GPCRs are activated in ß cells, less is known about the mechanisms controlling their deactivation. In many cell types, termination of GPCR signaling is controlled by the family of Regulators of G-protein Signaling (RGS). RGS proteins are expressed in most eukaryotic cells and ensure a timely return to the GPCR inactive state upon removal of the stimulus. The aims of this study were i) to determine if RGS16, the most highly enriched RGS protein in ß cells, regulates insulin secretion and ß-cell proliferation and, if so, ii) to elucidate the mechanisms underlying such effects. METHODS: Mouse and human islets were infected with recombinant adenoviruses expressing shRNA or cDNA sequences to knock-down or overexpress RGS16, respectively. 60 h post-infection, insulin secretion and cAMP levels were measured in static incubations in the presence of glucose and various secretagogues. ß-cell proliferation was measured in infected islets after 72 h in the presence of 16.7 mM glucose ± somatostatin and various inhibitors. RESULTS: RGS16 mRNA levels are strongly up-regulated in islets of Langerhans under hyperglycemic conditions in vivo and ex vivo. RGS16 overexpression stimulated glucose-induced insulin secretion in isolated mouse and human islets while, conversely, insulin secretion was impaired following RGS16 knock-down. Insulin secretion was no longer affected by RGS16 knock-down when islets were pre-treated with pertussis toxin to inactivate Gαi/o proteins, or in the presence of a somatostatin receptor antagonist. RGS16 overexpression increased intracellular cAMP levels, and its effects were blocked by an adenylyl cyclase inhibitor. Finally, RGS16 overexpression prevented the inhibitory effect of somatostatin on insulin secretion and ß-cell proliferation. CONCLUSIONS: Our results identify RGS16 as a novel regulator of ß-cell function that coordinately controls insulin secretion and proliferation by limiting the tonic inhibitory signal exerted by δ-cell-derived somatostatin in islets.

10.
Endocrinology ; 157(3): 1299-306, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26671180

RESUMO

Mouse ß-cell-specific reporter lines have played a key role in diabetes research. Although the rat provides several advantages, its use has lagged behind the mouse due to the relative paucity of genetic models. In this report we describe the generation and characterization of transgenic rats expressing a Renilla luciferase (RLuc)-enhanced yellow fluorescent protein (YFP) fusion under control of a 9-kb genomic fragment from the rat ins2 gene (RIP7-RLuc-YFP). Analysis of RLuc luminescence and YFP fluorescence revealed that reporter expression is restricted to ß-cells in the adult rat. Physiological characteristics including body weight, fat and lean mass, fasting and fed glucose levels, glucose and insulin tolerance, and ß-cell mass were similar between two RIP7-RLuc-YFP lines and wild-type littermates. Glucose-induced insulin secretion in isolated islets was indistinguishable from controls in one of the lines, whereas surprisingly, insulin secretion was defective in the second line. Consequently, subsequent studies were limited to the former line. We asked whether transgene activity was responsive to glucose as shown previously for the ins2 gene. Exposing islets ex vivo to high glucose (16.7 mM) or in vivo infusion of glucose for 24 hours increased luciferase activity in islets, whereas the fraction of YFP-positive ß-cells after glucose infusion was unchanged. Finally, we showed that fluorescence-activated cell sorting of YFP-positive islet cells can be used to enrich for ß-cells. Overall, this transgenic line will enable for the first time the application of both fluorescence and bioluminescence/luminescence-based approaches for the study of rat ß-cells.


Assuntos
Proteínas de Bactérias/genética , Genes Reporter/genética , Células Secretoras de Insulina/metabolismo , Insulina/genética , Luciferases de Renilla/genética , Proteínas Luminescentes/genética , Modelos Animais , Animais , Fusão Gênica Artificial , Proteínas de Bactérias/efeitos dos fármacos , Glicemia/metabolismo , Citometria de Fluxo , Genes Reporter/efeitos dos fármacos , Glucose/farmacologia , Teste de Tolerância a Glucose , Células Secretoras de Insulina/efeitos dos fármacos , Luciferases de Renilla/efeitos dos fármacos , Proteínas Luminescentes/efeitos dos fármacos , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Transgênicos
11.
J Biol Chem ; 290(34): 21131-21140, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26157145

RESUMO

FFAR1/GPR40 is a seven-transmembrane domain receptor (7TMR) expressed in pancreatic ß cells and activated by FFAs. Pharmacological activation of GPR40 is a strategy under consideration to increase insulin secretion in type 2 diabetes. GPR40 is known to signal predominantly via the heterotrimeric G proteins Gq/11. However, 7TMRs can also activate functionally distinct G protein-independent signaling via ß-arrestins. Further, G protein- and ß-arrestin-based signaling can be differentially modulated by different ligands, thus eliciting ligand-specific responses ("biased agonism"). Whether GPR40 engages ß-arrestin-dependent mechanisms and is subject to biased agonism is unknown. Using bioluminescence resonance energy transfer-based biosensors for real-time monitoring of cell signaling in living cells, we detected a ligand-induced GPR40-ß-arrestin interaction, with the synthetic GPR40 agonist TAK-875 being more effective than palmitate or oleate in recruiting ß-arrestins 1 and 2. Conversely, TAK-875 acted as a partial agonist of Gq/11-dependent GPR40 signaling relative to both FFAs. Pharmacological blockade of Gq activity decreased FFA-induced insulin secretion. In contrast, knockdown or genetic ablation of ß-arrestin 2 in an insulin-secreting cell line and mouse pancreatic islets, respectively, uniquely attenuated the insulinotropic activity of TAK-875, thus providing functional validation of the biosensor data. Collectively, these data reveal that in addition to coupling to Gq/11, GPR40 is functionally linked to a ß-arrestin 2-mediated insulinotropic signaling axis. These observations expose previously unrecognized complexity for GPR40 signal transduction and may guide the development of biased agonists showing improved clinical profile in type 2 diabetes.


Assuntos
Arrestinas/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Animais , Arrestinas/antagonistas & inibidores , Arrestinas/metabolismo , Benzofuranos/farmacologia , Técnicas Biossensoriais , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Insulina/agonistas , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Cinética , Camundongos , Ácido Oleico/farmacologia , Ácido Palmítico/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Sulfonas/farmacologia , Técnicas de Cultura de Tecidos , beta-Arrestina 2 , beta-Arrestinas
12.
Islets ; 6(4): e982376, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25437380

RESUMO

The transcription factor Pancreatic and Duodenal Homeobox-1 (PDX-1) plays a major role in the development and function of pancreatic ß-cells and its mutation results in diabetes. In adult ß-cells, glucose stimulates transcription of the insulin gene in part by regulating PDX-1 expression, stability and activity. Glucose is also thought to modulate PDX-1 nuclear translocation but in vitro studies examining nucleo-cytoplasmic shuttling of endogenous or ectopically expressed PDX-1 in insulin-secreting cell lines have led to conflicting results. Here we show that endogenous PDX-1 undergoes translocation from the cytoplasm to the nucleus in response to glucose in dispersed rat islets but not in insulin-secreting MIN6, HIT-T15, or INS832/13 cells. Interestingly, however, we found that a PDX-1-GFP fusion protein can shuttle from the cytoplasm to the nucleus in response to glucose stimulation in HIT-T15 cells. Our results suggest that the regulation of endogenous PDX-1 sub-cellular localization by glucose is observed in primary islets and that care should be taken when interpreting data from insulin-secreting cell lines.


Assuntos
Glucose/farmacologia , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar
14.
Can Respir J ; 18(5): 278-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21969930

RESUMO

BACKGROUND: Noneosinophilic asthma has been regarded as a distinct phenotype characterized by a poor response to inhaled corticosteroids (ICS). OBJECTIVE: To determine whether noneosinophilic, steroid-naive asthmatic subjects show an improvement in asthma control, asthma symptoms and spirometry after four weeks of treatment with ICS, and whether they further benefit from the addition of a long-acting beta-2 agonists to ICS. METHODS: A randomized, double-blind, placebo-controlled, multicentre study comparing the efficacy of placebo versus inhaled fluticasone propionate 250 mcg twice daily for four weeks in mildly uncontrolled, steroid-naive asthmatic subjects with a sputum eosinophil count of 2% or less. This was followed by an open-label, four-week treatment period with fluticasone propionate 250 mcg/salmeterol 50 mcg, twice daily for all subjects. RESULTS: After four weeks of double-blind treatment, there was a statistically significant and clinically relevant improvement in the mean (± SD) Asthma Control Questionnaire score in the ICS-treated group (n = 6) (decrease of 1.0 ± 0.5) compared with the placebo group (n = 6) (decrease of 0.09 ± 0.4) (P = 0.008). Forced expiratory volume in 1 s declined in the placebo group (-0.2 ± 0.2 L) and did not change in the ICS group (0.04 ± 0.1 L) after four weeks of treatment (P = 0.02). The open-label treatment with fluticasone propionate 250 mcg/salmeterol 50 mcg did not produce additional improvements in those who were previously treated for four weeks with inhaled fluticasone alone. CONCLUSION: A clinically important and statistically significant response to ICS was observed in mildly uncontrolled noneosinophilic asthmatic subjects.


Assuntos
Corticosteroides/administração & dosagem , Albuterol/análogos & derivados , Androstadienos/administração & dosagem , Asma/tratamento farmacológico , Administração por Inalação , Adolescente , Adulto , Idoso , Albuterol/administração & dosagem , Asma/metabolismo , Asma/fisiopatologia , Asma/prevenção & controle , Método Duplo-Cego , Combinação de Medicamentos , Eosinófilos/metabolismo , Feminino , Combinação Fluticasona-Salmeterol , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Testes de Função Respiratória , Espirometria , Adulto Jovem
15.
Diabetes ; 58(9): 2048-58, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19502418

RESUMO

OBJECTIVE: Prolonged exposure of pancreatic beta-cells to simultaneously elevated levels of fatty acids and glucose (glucolipotoxicity) impairs insulin gene transcription. However, the intracellular signaling pathways mediating these effects are mostly unknown. This study aimed to ascertain the role of extracellular-regulated kinases (ERKs)1/2, protein kinase B (PKB), and Per-Arnt-Sim kinase (PASK) in palmitate inhibition of insulin gene expression in pancreatic beta-cells. RESEARCH DESIGN AND METHODS: MIN6 cells and isolated rat islets were cultured in the presence of elevated glucose, with or without palmitate or ceramide. ERK1/2 phosphorylation, PKB phosphorylation, and PASK expression were examined by immunoblotting and real-time PCR. The role of these kinases in insulin gene expression was assessed using pharmacological and molecular approaches. RESULTS: Exposure of MIN6 cells and islets to elevated glucose induced ERK1/2 and PKB phosphorylation, which was further enhanced by palmitate. Inhibition of ERK1/2, but not of PKB, partially prevented the inhibition of insulin gene expression in the presence of palmitate or ceramide. Glucose-induced expression of PASK mRNA and protein levels was reduced in the presence of palmitate. Overexpression of wild-type PASK increased insulin and pancreatic duodenal homeobox-1 gene expression in MIN6 cells and rat islets incubated with glucose and palmitate, whereas overexpression of a kinase-dead PASK mutant in rat islets decreased expression of insulin and pancreatic duodenal homeobox-1 and increased C/EBPbeta expression. CONCLUSIONS: Both the PASK and ERK1/2 signaling pathways mediate palmitate inhibition of insulin gene expression. These findings identify PASK as a novel mediator of glucolipotoxicity on the insulin gene in pancreatic beta-cells.


Assuntos
Células Secretoras de Insulina/fisiologia , Insulina/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Ácido Glucárico/farmacologia , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Palmitatos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Ratos , Esfingosina/análogos & derivados , Esfingosina/farmacologia
16.
Diabetes ; 57(9): 2432-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18559658

RESUMO

OBJECTIVE: The G-protein-coupled receptor GPR40 is expressed in pancreatic beta-cells and is activated by long-chain fatty acids. Gene deletion studies have shown that GPR40 mediates, at least in part, fatty acid-amplification of glucose-induced insulin secretion (GSIS) but is not implicated in GSIS itself. However, the role of GPR40 in the long-term effects of fatty acids on insulin secretion remains controversial. This study aimed to test the hypothesis that GPR40 plays a role in insulin secretion after high-fat feeding. RESEARCH DESIGN AND METHOD GPR40 knockout (KO) mice on a C57BL/6 background and their wild-type (WT) littermates were fed a high-fat diet (HFD) for 11 weeks. Glucose tolerance, insulin tolerance, and insulin secretion in response to glucose and Intralipid were assessed during the course of the diet period. RESULTS: GPR40 KO mice had fasting hyperglycemia. They became as obese, glucose intolerant, and insulin resistant as their WT littermates given HFD and developed a similar degree of liver steatosis. Their fasting blood glucose levels increased earlier than those of control mice during the course of the HFD. The remarkable increase in insulin secretory responses to intravenous glucose and Intralipid seen in WT mice after HFD was of much lower magnitude in GPR40 KO mice. CONCLUSIONS: GPR40 plays a role not only in fatty acid modulation of insulin secretion, but also in GSIS after high-fat feeding. These observations raise doubts on the validity of a therapeutic approach based on GPR40 antagonism for the treatment of type 2 diabetes.


Assuntos
Gorduras na Dieta/farmacologia , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Glicemia/metabolismo , Ingestão de Alimentos/fisiologia , Ácidos Graxos/metabolismo , Expressão Gênica/fisiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/fisiopatologia , Hiperglicemia/fisiopatologia , Secreção de Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/fisiopatologia , Receptores Acoplados a Proteínas G/genética
17.
Diabetes ; 57(2): 424-31, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17991758

RESUMO

OBJECTIVE: Prolonged exposure of isolated islets of Langerhans to elevated levels of fatty acids, in the presence of high glucose, impairs insulin gene expression via a transcriptional mechanism involving nuclear exclusion of pancreas-duodenum homeobox-1 (Pdx-1) and loss of MafA expression. Whether such a phenomenon also occurs in vivo is unknown. Our objective was therefore to ascertain whether chronic nutrient oversupply inhibits insulin gene expression in vivo. RESEARCH DESIGN AND METHODS: Wistar rats received alternating 4-h infusions of glucose and Intralipid for a total of 72 h. Control groups received alternating infusions of glucose and saline, saline and Intralipid, or saline only. Insulin and C-peptide secretion were measured under hyperglycemic clamps. Insulin secretion and gene expression were assessed in isolated islets, and beta-cell mass was quantified by morphometric analysis. RESULTS: Neither C-peptide secretion nor insulin sensitivity was different among infusion regimens. Insulin content and insulin mRNA levels were lower in islets isolated from rats infused with glucose plus Intralipid. This was associated with reduced Pdx-1 binding to the endogenous insulin promoter, and an increased proportion of Pdx-1 localized in the cytoplasm versus the nucleus. In contrast, MafA mRNA and protein levels and beta-cell mass and proliferation were unchanged. CONCLUSIONS: Cyclical and alternating infusions of glucose and Intralipid in normal rats inhibit insulin gene expression without affecting insulin secretion or beta-cell mass. We conclude that fatty acid inhibition of insulin gene expression, in the presence of high glucose, is an early functional defect that may contribute to beta-cell failure in type 2 diabetes.


Assuntos
Emulsões Gordurosas Intravenosas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Proteínas de Homeodomínio/metabolismo , Insulina/genética , Transativadores/metabolismo , Animais , Glicemia/metabolismo , Peptídeo C/efeitos dos fármacos , Peptídeo C/metabolismo , Emulsões Gordurosas Intravenosas/administração & dosagem , Ácidos Graxos não Esterificados/sangue , Glucose/administração & dosagem , Teste de Tolerância a Glucose , Proteínas de Homeodomínio/efeitos dos fármacos , Hiperglicemia , Infusões Intravenosas , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , RNA Mensageiro/genética , Ratos , Ratos Wistar , Transativadores/efeitos dos fármacos
18.
Diabetes ; 56(4): 1087-94, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17395749

RESUMO

Long-chain fatty acids amplify insulin secretion from the pancreatic beta-cell. The G-protein-coupled receptor GPR40 is specifically expressed in beta-cells and is activated by fatty acids; however, its role in acute regulation of insulin secretion in vivo remains unclear. To this aim, we generated GPR40 knockout (KO) mice and examined glucose homeostasis, insulin secretion in response to glucose and Intralipid in vivo, and insulin secretion in vitro after short- and long-term exposure to fatty acids. Our results show that GPR40 KO mice have essentially normal glucose tolerance and insulin secretion in response to glucose. Insulin secretion in response to Intralipid was reduced by approximately 50%. In isolated islets, insulin secretion in response to glucose and other secretagogues was unaltered, but fatty acid potentiation of insulin release was markedly reduced. The Galpha(q/11) inhibitor YM-254890 dose-dependently reduced palmitate potentiation of glucose-induced insulin secretion. Islets from GPR40 KO mice were as sensitive to fatty acid inhibition of insulin secretion upon prolonged exposure as islets from wild-type animals. We conclude that GPR40 contributes approximately half of the full acute insulin secretory response to fatty acids in mice but does not play a role in the mechanisms by which fatty acids chronically impair insulin secretion.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Células Cultivadas , Emulsões Gordurosas Intravenosas/farmacologia , Feminino , Glucose/farmacologia , Heparina/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética
19.
Compr Psychiatry ; 47(6): 443-55, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17067867

RESUMO

Children who report sexual abuse (SA) have been found to display a range of internalizing and externalizing behavior problems. In the present study, a tree-based analysis was used to derive models predicting the variability of internalizing and externalizing behavior problems as well as dissociation symptoms in SA girls. Participants were 150 girls aged 4 to 12 years referred to a specialized pediatric clinic after disclosure of SA. The potential predictors taken into account included sociodemographic and abuse-related variables as well as maternal and family characteristics. The models obtained point to prior abuse as a salient variable in predicting outcomes of SA girls. Implications for the treatment for children disclosing SA are discussed.


Assuntos
Abuso Sexual na Infância/psicologia , Abuso Sexual na Infância/estatística & dados numéricos , Transtornos do Comportamento Infantil/psicologia , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Adulto , Criança , Abuso Sexual na Infância/diagnóstico , Transtornos do Comportamento Infantil/diagnóstico , Transtornos do Comportamento Infantil/epidemiologia , Pré-Escolar , Mecanismos de Defesa , Transtornos Dissociativos/diagnóstico , Transtornos Dissociativos/epidemiologia , Transtornos Dissociativos/psicologia , Características da Família , Feminino , Seguimentos , Humanos , Controle Interno-Externo , Acontecimentos que Mudam a Vida , Masculino , Relações Mãe-Filho , Determinação da Personalidade , Encaminhamento e Consulta , Análise de Regressão
20.
J Allergy Clin Immunol ; 110(4): 641-6, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12373274

RESUMO

BACKGROUND: Isocyanates are a common cause of occupational asthma (OA). OBJECTIVES: We sought (1) to examine whether asthmatic reactions to isocyanates could be induced at concentrations as low as 1 ppb in subjects with OA caused by isocyanates previously diagnosed in our center and (2) to compare the inflammatory and functional changes after exposure to 1 and 15 ppb of isocyanates with similar total doses (concentration of isocyanates x duration of exposure). METHODS: Specific inhalation challenges were performed in 12 asthmatic subjects with previously confirmed OA caused by isocyanates. Eight subjects were exposed to 1 ppb at 10% of the dose of isocyanates that induced an asthmatic reaction at the time of the diagnosis. Seven subjects were exposed to the same total dose of isocyanates by using concentrations of 1 and 15 ppb 1 month apart. RESULTS: Exposure to 1 ppb at 10% of the dose that had induced functional changes at the time of diagnosis induced an asthmatic reaction in 3 of 8 subjects. There was a significant correlation between the percentage of maximum decrease in FEV(1) after exposure to 1 ppb and the increase in sputum neutrophils (rho = 0.8). By keeping the total dose (concentration of isocyanates x duration of exposure) of isocyanates similar, 4 of 7 subjects experienced an asthmatic reaction after exposure to 1 ppb, whereas only one subject experienced an 18.5% decrease in FEV(1) after exposure to 15 ppb. CONCLUSION: Isocyanates can induce functional and inflammatory changes (mainly neutrophilic) at concentrations as low as 1 ppb. For the same total dose of exposure, low concentrations of isocyanates are as harmful as or even more harmful than higher concentrations for subjects with OA to isocyanates.


Assuntos
Asma/fisiopatologia , Isocianatos/administração & dosagem , Administração por Inalação , Adulto , Idoso , Asma/induzido quimicamente , Asma/patologia , Relação Dose-Resposta a Droga , Feminino , Volume Expiratório Forçado/efeitos dos fármacos , Humanos , Isocianatos/farmacologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/patologia , Doenças Profissionais/patologia , Doenças Profissionais/fisiopatologia , Concentração Osmolar , Escarro/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...