Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(21): 11284-11303, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31612951

RESUMO

Endocytosis is a mechanism by which cells sense their environment and internalize various nutrients, growth factors and signaling molecules. This process initiates at the plasma membrane, converges with autophagy, and terminates at the lysosome. It is well-established that cellular uptake of antisense oligonucleotides (ASOs) proceeds through the endocytic pathway; however, only a small fraction escapes endosomal trafficking while the majority are rendered inactive in the lysosome. Since these pathways converge and share common molecular machinery, it is unclear if autophagy-related trafficking participates in ASO uptake or whether modulation of autophagy affects ASO activity and localization. To address these questions, we investigated the effects of autophagy modulation on ASO activity in cells and mice. We found that enhancing autophagy through small-molecule mTOR inhibition, serum-starvation/fasting, and ketogenic diet, increased ASO-mediated target reduction in vitro and in vivo. Additionally, autophagy activation enhanced the localization of ASOs into autophagosomes without altering intracellular concentrations or trafficking to other compartments. These results support a novel role for autophagy and the autophagosome as a previously unidentified compartment that participates in and contributes to enhanced ASO activity. Further, we demonstrate non-chemical methods to enhance autophagy and subsequent ASO activity using translatable approaches such as fasting or ketogenic diet.


Assuntos
Autofagia/fisiologia , Oligonucleotídeos Antissenso/metabolismo , Animais , Autofagossomos/metabolismo , Transporte Biológico/fisiologia , Células Cultivadas , Endocitose/fisiologia , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/genética , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...