Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Comput Methods Programs Biomed ; 242: 107860, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844488

RESUMO

BACKGROUND AND OBJECTIVE: In silico methods are gaining attention for predicting drug-induced Torsade de Pointes (TdP) in different stages of drug development. However, many computational models tended not to account for inter-individual response variability due to demographic covariates, such as sex, or physiologic covariates, such as renal function, which may be crucial when predicting TdP. This study aims to compare the effects of drugs in male and female populations with normal and impaired renal function using in silico methods. METHODS: Pharmacokinetic models considering sex and renal function as covariates were implemented from data published in pharmacokinetic studies. Drug effects were simulated using an electrophysiologically calibrated population of cellular models of 300 males and 300 females. The population of models was built by modifying the endocardial action potential model published by O'Hara et al. (2011) according to the experimentally measured gene expression levels of 12 ion channels. RESULTS: Fifteen pharmacokinetic models for CiPA drugs were implemented and validated in this study. Eight pharmacokinetic models included the effect of renal function and four the effect of sex. The mean difference in action potential duration (APD) between male and female populations was 24.9 ms (p<0.05). Our simulations indicated that women with impaired renal function were particularly susceptible to drug-induced arrhythmias, whereas healthy men were less prone to TdP. Differences between patient groups were more pronounced for high TdP-risk drugs. The proposed in silico tool also revealed that individuals with impaired renal function, electrophysiologically simulated with hyperkalemia (extracellular potassium concentration [K+]o = 7 mM) exhibited less pronounced APD prolongation than individuals with normal potassium levels. The pharmacokinetic/electrophysiological framework was used to determine the maximum safe dose of dofetilide in different patient groups. As a proof of concept, 3D simulations were also run for dofetilide obtaining QT prolongation in accordance with previously reported clinical values. CONCLUSIONS: This study presents a novel methodology that combines pharmacokinetic and electrophysiological models to incorporate the effects of sex and renal function into in silico drug simulations and highlights their impact on TdP-risk assessment. Furthermore, it may also help inform maximum dose regimens that ensure TdP-related safety in a specific sub-population of patients.


Assuntos
Arritmias Cardíacas , Torsades de Pointes , Feminino , Humanos , Masculino , Sulfonamidas/efeitos adversos , Torsades de Pointes/induzido quimicamente , Potássio/efeitos adversos , Proteínas de Ligação a DNA
2.
Arch Toxicol ; 97(10): 2721-2740, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37528229

RESUMO

In silico methods can be used for an early assessment of arrhythmogenic properties of drug candidates. However, their use for decision-making is conditioned by the possibility to estimate the predictions' uncertainty. This work describes our efforts to develop uncertainty quantification methods for the predictions produced by multi-level proarrhythmia models. In silico models used in this field usually start with experimental or predicted IC50 values that describe drug-induced ion channel blockade. Using such inputs, an electrophysiological model computes how the ion channel inhibition, exerted by a drug in a certain concentration, translates to an altered shape and duration of the action potential in cardiac cells, which can be represented as arrhythmogenic risk biomarkers such as the APD90. Using this framework, we identify the main sources of aleatory and epistemic uncertainties and propose a method based on probabilistic simulations that replaces single-point estimates predicted using multiple input values, including the IC50s and the electrophysiological parameters, by distributions of values. Two selected variability types associated with these inputs are then propagated through the multi-level model to estimate their impact on the uncertainty levels in the output, expressed by means of intervals. The proposed approach yields single predictions of arrhythmogenic risk biomarkers together with value intervals, providing a more comprehensive and realistic description of drug effects on a human population. The methodology was tested by predicting arrhythmogenic biomarkers on a series of twelve well-characterised marketed drugs, belonging to different arrhythmogenic risk classes.


Assuntos
Arritmias Cardíacas , Coração , Humanos , Incerteza , Simulação por Computador , Arritmias Cardíacas/induzido quimicamente , Canais Iônicos/toxicidade , Biomarcadores
3.
Comput Methods Programs Biomed ; 230: 107350, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689807

RESUMO

BACKGROUND AND OBJECTIVE: Structural and electrical remodeling in heart failure predisposes the heart to ventricular arrhythmias. Computer modeling approaches, used to complement experimental results, can provide a more mechanistic knowledge of the biophysical phenomena underlying cardiac pathologies. Indeed, previous in-silico studies have improved the understanding of the electrical correlates of heart failure involved in arrhythmogenesis; however, information on the crosstalk between electrical activity, intracellular Ca2+ and contraction is still incomplete. This study aims to investigate the electro-mechanical behavior of virtual failing human ventricular myocytes to help in the development of therapies, which should ideally target pump failure and arrhythmias at the same time. METHODS: We implemented characteristic remodeling of heart failure with reduced ejection fraction by including reported changes in ionic conductances, sarcomere function and cell structure (e.g. T-tubules disarray). Model parametrization was based on published experimental data and the outcome of simulations was validated against experimentally observed patterns. We focused on two aspects of myocardial dysfunction central in heart failure: altered force-frequency relationship and susceptibility to arrhythmogenic early afterdepolarizations. Because biological variability is a major problem in the generalization of in-silico findings based on a unique set of model parameters, we generated and evaluated a population of models. RESULTS: The population-based approach is crucial in robust identification of parameters at the core of abnormalities and in generalizing the outcome of their correction. As compared to non-failing ones, failing myocytes had prolonged repolarization, a higher incidence of early afterdepolarizations, reduced contraction and a shallower force-frequency relationship, all features peculiar of heart failure. Component analysis applied to the model population identified reduced SERCA function as a relevant contributor to most of these derangements, which were largely reverted or diminished by restoration of SERCA function alone. CONCLUSIONS: These simulated results encourage the development of strategies comprising SERCA stimulation and highlight the need to evaluate both electrical and mechanical outcomes.


Assuntos
Insuficiência Cardíaca , Modelos Cardiovasculares , Humanos , Potenciais de Ação/fisiologia , Miócitos Cardíacos/patologia , Arritmias Cardíacas , Cálcio , Contração Miocárdica/fisiologia
4.
Comput Methods Programs Biomed ; 230: 107345, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689808

RESUMO

BACKGROUND AND OBJECTIVE: In silico prediction of drug-induced ventricular arrhythmia often requires computationally intensive simulations, making its application tedious and non-interactive. This inconvenience can be mitigated using matrices of precomputed simulation results, allowing instantaneous computation of biomarkers such as action potential duration at 90% of the repolarisation (APD90). However, preparing such matrices can be computationally intensive for the method developers, limiting the range of simulated conditions. In this work, we aim to optimise the generation of these matrices so that they can be obtained with less effort and for a broader range of input values. METHODS: Machine learning methods were applied, building models trained with only a small fraction of the originally simulated results. The predictive performances of the models were assessed by comparing their predicted values with the actual simulation results, using percentual mean absolute error and mean relative error, as well as the percentage of data with a relative error below 5%. RESULTS: Our method obtained highly accurate estimations of the original values, leading to a nearly one hundred-fold decrease in computation time. This method also allows precomputing more complex matrices, describing the effect of more ion channels on the APD90. The best results were obtained by applying Support Vector Machine models, which yielded errors below 1% in most cases. This approach was further validated by predicting the APD90 of a set of 12 CiPA compounds and exporting the optimal settings for predicting APD90 using a different set of ion channels, always with satisfactory results. CONCLUSIONS: The proposed method effectively reduces the computational effort required to generate matrices of precomputed electrophysiological simulation values. The same approach can be applied in other fields where computationally costly simulations are applied repeatedly using slightly different input values.


Assuntos
Arritmias Cardíacas , Aprendizado de Máquina , Humanos , Simulação por Computador , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/diagnóstico , Potenciais de Ação
5.
Comput Methods Programs Biomed ; 221: 106934, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35687995

RESUMO

BACKGROUND AND OBJECTIVE: In silico tools are known to aid in drug cardiotoxicity assessment. However, computational models do not usually consider electrophysiological variability, which may be crucial when predicting rare adverse events such as drug-induced Torsade de Pointes (TdP). In addition, classification tools are usually binary and are not validated using an external data set. Here we analyze the role of incorporating electrophysiological variability in the prediction of drug-induced arrhythmogenic-risk, using a ternary classification and two external validation datasets. METHODS: The effects of the 12 training CiPA drugs were simulated at three different concentrations using a single baseline model and an electrophysiologically calibrated population of models. 9 biomarkers related with action potential (AP), calcium dynamics and net charge were measured for each simulated concentration. These biomarkers were used to build ternary classifiers based on Support Vector Machines (SVM) methodology. Classifiers were validated using two external drug sets: the 16 validation CiPA drugs and 81 drugs from CredibleMeds database. RESULTS: Population of models allowed to obtain different AP responses under the same pharmacological intervention and improve the prediction of drug-induced TdP with respect to the baseline model. The classification tools based on population of models achieve an accuracy higher than 0.8 and a mean classification error (MCE) lower than 0.3 for both validation drug sets and for the two electrophysiological action potential models studied (Tomek et al. 2020 and a modified version of O'Hara et al. 2011). In addition, simulations with population of models allowed the identification of individuals with lower conductances of IKr, IKs, and INaK and higher conductances of ICaL, INaL, and INCX, which are more prone to develop TdP. CONCLUSIONS: The methodology presented here provides new opportunities to assess drug-induced TdP-risk, taking into account electrophysiological variability and may be helpful to improve current cardiac safety screening methods.


Assuntos
Torsades de Pointes , Arritmias Cardíacas/induzido quimicamente , Biomarcadores , Proteínas de Ligação a DNA , Fenômenos Eletrofisiológicos , Humanos , Medição de Risco , Torsades de Pointes/induzido quimicamente
6.
Comput Biol Med ; 141: 105038, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34836624

RESUMO

Electrophysiological alterations of the myocardium caused by acute ischemia constitute a pro-arrhythmic substrate for the generation of potentially lethal arrhythmias. Experimental evidence has shown that the main components of acute ischemia that induce these electrophysiological alterations are hyperkalemia, hypoxia (or anoxia in complete artery occlusion), and acidosis. However, the influence of each ischemic component on the likelihood of reentry is not completely established. Moreover, the role of the His-Purkinje system (HPS) in the initiation and maintenance of arrhythmias is not completely understood. In the present work, we investigate how the three components of ischemia affect the vulnerable window (VW) for reentry using computational simulations. In addition, we analyze the role of the HPS on arrhythmogenesis. A 3D biventricular/torso human model that includes a realistic geometry of the central and border ischemic zones with one of the most electrophysiologically detailed model of ischemia to date, as well as a realistic cardiac conduction system, were used to assess the VW for reentry. Four scenarios of ischemic severity corresponding to different minutes after coronary artery occlusion were simulated. Our results suggest that ischemic severity plays an important role in the generation of reentries. Indeed, this is the first 3D simulation study to show that ventricular arrhythmias could be generated under moderate ischemic conditions, but not in mild and severe ischemia. Moreover, our results show that anoxia is the ischemic component with the most significant effect on the width of the VW. Thus, a change in the level of anoxia from moderate to severe leads to a greater increment in the VW (40 ms), in comparison with the increment of 20 ms and 35 ms produced by the individual change in the level of hyperkalemia and acidosis, respectively. Finally, the HPS was a necessary element for the generation of approximately 17% of reentries obtained. The retrograde conduction from the myocardium to HPS in the ischemic region, conduction blocks in discrete sections of the HPS, and the degree of ischemia affecting Purkinje cells, are suggested as mechanisms that favor the generation of ventricular arrhythmias.


Assuntos
Isquemia Miocárdica , Arritmias Cardíacas , Coração , Sistema de Condução Cardíaco , Humanos , Miocárdio
7.
Cells ; 10(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831076

RESUMO

During atrial fibrillation, cardiac tissue undergoes different remodeling processes at different scales from the molecular level to the tissue level. One central player that contributes to both electrical and structural remodeling is the myofibroblast. Based on recent experimental evidence on myofibroblasts' ability to contract, we extended a biophysical myofibroblast model with Ca2+ handling components and studied the effect on cellular and tissue electrophysiology. Using genetic algorithms, we fitted the myofibroblast model parameters to the existing in vitro data. In silico experiments showed that Ca2+ currents can explain the experimentally observed variability regarding the myofibroblast resting membrane potential. The presence of an L-type Ca2+ current can trigger automaticity in the myofibroblast with a cycle length of 799.9 ms. Myocyte action potentials were prolonged when coupled to myofibroblasts with Ca2+ handling machinery. Different spatial myofibroblast distribution patterns increased the vulnerable window to induce arrhythmia from 12 ms in non-fibrotic tissue to 22 ± 2.5 ms and altered the reentry dynamics. Our findings suggest that Ca2+ handling can considerably affect myofibroblast electrophysiology and alter the electrical propagation in atrial tissue composed of myocytes coupled with myofibroblasts. These findings can inform experimental validation experiments to further elucidate the role of myofibroblast Ca2+ handling in atrial arrhythmogenesis.


Assuntos
Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Cálcio/metabolismo , Simulação por Computador , Fenômenos Eletrofisiológicos , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Miofibroblastos/patologia , Remodelação Ventricular , Algoritmos , Fibrose , Humanos , Potenciais da Membrana , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo
8.
Comput Biol Med ; 137: 104796, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461502

RESUMO

The high incidence of cardiac arrythmias underlines the need for the assessment of pharmacological therapies. In this field of drug efficacy, as in the field of drug safety highlighted by the Comprehensive in Vitro Proarrhythmia Assay initiative, new pillars for research have become crucial: firstly, the integration of in-silico experiments, and secondly the evaluation of fully integrated biological systems, such as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). In this study, we therefore aimed to combine in-vitro experiments and in-silico simulations to evaluate the antiarrhythmic effect of L-type calcium current (ICaL) block in hiPSC-CMs. For this, hiPSC-CM preparations were cultured and an equivalent virtual tissue was modeled. Re-entry patterns of electrical activation were induced and several biomarkers were obtained before and after ICaL block. The virtual hiPSC-CM simulations were also reproduced using a tissue composed of adult ventricular cardiomyocytes (hAdultV-CMs). The analysis of phases, currents and safety factor for propagation showed an increased size of the re-entry core when ICaL was blocked as a result of depressed cellular excitability. The bigger wavefront curvature yielded reductions of 12.2%, 6.9%, and 4.2% in the frequency of the re-entry for hiPSC-CM cultures, virtual hiPSC-CM, and hAdultV-CM tissues, respectively. Furthermore, ICaL block led to a 47.8% shortening of the vulnerable window for re-entry in the virtual hiPSC-CM tissue and to re-entry vanishment in hAdultV-CM tissue. The consistent behavior between in-vitro and in-silico hiPSC-CMs and between in-silico hiPSC-CMs and hAdultV-CMs evidences that virtual hiPSC-CM tissues are suitable for assessing cardiac efficacy, as done in the present study through the analysis of ICaL block.


Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Antiarrítmicos , Simulação por Computador , Humanos , Miócitos Cardíacos
9.
Front Physiol ; 12: 699291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290623

RESUMO

In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. However, it remains an open challenge to find fibrotic areas and to differentiate their density and transmurality. This study aims to identify the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated cardiac electrograms, combined with a generalized model of clinical noise, reproduce clinically measured signals. Our hybrid dataset approach combines in silico and clinical electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate. This approach captures different in vivo dynamics of the electrical propagation reflected on healthy electrogram morphology and synergistically combines it with synthetic fibrotic electrograms from in silico experiments. The machine learning algorithm was tested on five patients and compared against clinical voltage maps as a proof of concept, distinguishing non-fibrotic from fibrotic tissue and characterizing the patient's fibrotic tissue in terms of density and transmurality. The proposed approach can be used to overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation targeting fibrotic areas.

10.
J Mol Cell Cardiol ; 153: 14-25, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33326834

RESUMO

ß-adrenergic receptor antagonists (ß-blockers) are extensively used to improve cardiac performance in heart failure (HF), but the electrical improvements with these clinical treatments are not fully understood. The aim of this study was to analyze the electrophysiological effects of ß-adrenergic system remodeling in heart failure with reduced ejection fraction and the underlying mechanisms. We used a combined mathematical model that integrated ß-adrenergic signaling with electrophysiology and calcium cycling in human ventricular myocytes. HF remodeling, both in the electrophysiological and signaling systems, was introduced to quantitatively analyze changes in electrophysiological properties due to the stimulation of ß-adrenergic receptors in failing myocytes. We found that the inotropic effect of ß-adrenergic stimulation was reduced in HF due to the altered Ca2+ dynamics resulting from the combination of structural, electrophysiological and signaling remodeling. Isolated cells showed proarrhythmic risk after sympathetic stimulation because early afterdepolarizations appeared, and the vulnerability was greater in failing myocytes. When analyzing coupled cells, ß-adrenergic stimulation reduced transmural repolarization gradients between endocardium and epicardium in normal tissue, but was less effective at reducing these gradients after HF remodeling. The comparison of the selective activation of ß-adrenergic isoforms revealed that the response to ß2-adrenergic receptors stimulation was blunted in HF while ß1-adrenergic receptors downstream effectors regulated most of the changes observed after sympathetic stimulation. In conclusion, this study was able to reproduce an altered ß-adrenergic activity on failing myocytes and to explain the mechanisms involved. The derived predictions could help in the treatment of HF and guide in the design of future experiments.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Simulação por Computador , Insuficiência Cardíaca/fisiopatologia , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Remodelação Ventricular , Potenciais de Ação , Cálcio/metabolismo , Humanos , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 2/química
11.
J Chem Inf Model ; 60(10): 5172-5187, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786710

RESUMO

Drug-induced torsade de pointes (TdP) is a life-threatening ventricular arrhythmia responsible for the withdrawal of many drugs from the market. Although currently used TdP risk-assessment methods are effective, they are expensive and prone to produce false positives. In recent years, in silico cardiac simulations have proven to be a valuable tool for the prediction of drug effects. The objective of this work is to evaluate different biomarkers of drug-induced proarrhythmic risk and to develop an in silico risk classifier. Cellular simulations were performed using a modified version of the O'Hara et al. ventricular action potential model and existing pharmacological data (IC50 and effective free therapeutic plasma concentration, EFTPC) for 109 drugs of known torsadogenic risk (51 positive). For each compound, four biomarkers were tested: Tx (drug concentration leading to a 10% prolongation of the action potential over the EFTPC), TqNet (net charge carried by ionic currents when exposed to 10 times the EFTPC with respect to the net charge in control), Ttriang (triangulation for a drug concentration of 10 times the EFTPC over triangulation in control), and TEAD (drug concentration originating early afterdepolarizations over EFTPC). Receiver operating characteristic (ROC) curves were built for each biomarker to evaluate their individual predictive quality. At the optimal cutoff point, accuracies for Tx, TqNet, Ttriang, and TEAD were 89.9, 91.7, 90.8, and 78.9% respectively. The resulting accuracy of the hERG IC50 test (current biomarker) was 78.9%. When combining Tx, TqNet and Ttriang into a classifier based on decision trees, the prediction improves, achieving an accuracy of 94.5%. The sensitivity analysis revealed that most of the effects on the action potential are mainly due to changes in IKr, ICaL, INaL and IKs. In fact, considering that drugs affect only these four currents, TdP risk classification can be as accurate as when considering effects on the seven main currents proposed by the CiPA initiative. Finally, we built a ready-to-use tool (based on more than 450 000 simulations), which can be used to quickly assess the proarrhythmic risk of a compound. In conclusion, our in silico tool can be useful for the preclinical assessment of TdP-risk and to reduce costs related with new drug development. The TdP risk-assessment tool and the software used in this work are available at https://riunet.upv.es/handle/10251/136919.


Assuntos
Preparações Farmacêuticas , Torsades de Pointes , Potenciais de Ação , Arritmias Cardíacas/induzido quimicamente , Eletrocardiografia , Humanos , Torsades de Pointes/induzido quimicamente
12.
J Chem Inf Model ; 60(3): 1779-1790, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32105478

RESUMO

Preclinical assessment of drug-induced proarrhythmicity is typically evaluated by the potency of the drug to block the potassium human ether-à-go-go-related gene (hERG) channels, which is currently quantified by the IC50. However, channel block depends on the experimental conditions. Our aim is to improve the evaluation of the blocking potency of drugs by designing experimental stimulation protocols to measure the IC50 that will help to decide whether the IC50 is representative enough. We used the state-of-the-art mathematical models of the cardiac electrophysiological activity to design three stimulation protocols that enhance the differences in the probabilities to occupy a certain conformational state of the channel and, therefore, the potential differences in the blocking effects of a compound. We simulated an extensive set of 144 in silico IKr blockers with different kinetics and affinities to conformational states of the channel and we also experimentally validated our key predictions. Our results show that the IC50 protocol dependency relied on the tested compounds. Some of them showed no differences or small differences on the IC50 value, which suggests that the IC50 could be a good indicator of the blocking potency in these cases. However, others provided highly protocol dependent IC50 values, which could differ by even 2 orders of magnitude. Moreover, the protocols yielding the maximum IC50 and minimum IC50 depended on the drug, which complicates the definition of a "standard" protocol to minimize the influence of the stimulation protocol on the IC50 measurement in safety pharmacology. As a conclusion, we propose the adoption of our three-protocol IC50 assay to estimate the potency to block hERG in vitro. If the IC50 values obtained for a compound are similar, then the IC50 could be used as an indicator of its blocking potency, otherwise kinetics and state-dependent binding properties should be accounted.


Assuntos
Preparações Farmacêuticas , Bloqueadores dos Canais de Potássio , Simulação por Computador , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Cinética , Bloqueadores dos Canais de Potássio/farmacologia
13.
Front Pharmacol ; 11: 580481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519442

RESUMO

The prolongation of the QT interval represents the main feature of the long QT syndrome (LQTS), a life-threatening genetic disease. The heterozygous SCN5A V411M mutation of the human sodium channel leads to a LQTS type 3 with severe proarrhythmic effects due to an increase in the late component of the sodium current (INaL). The two sodium blockers flecainide and ranolazine are equally recommended by the current 2015 ESC guidelines to treat patients with LQTS type 3 and persistently prolonged QT intervals. However, awareness of pro-arrhythmic effects of flecainide in LQTS type 3 patients arose upon the study of the SCN5A E1784K mutation. Regarding SCN5A V411M individuals, flecainide showed good results albeit in a reduced number of patients and no evidence supporting the use of ranolazine has ever been released. Therefore, we ought to compare the effect of ranolazine and flecainide in a SCN5A V411M model using an in-silico modeling and simulation approach. We collected clinical data of four patients. Then, we fitted four Markovian models of the human sodium current (INa) to experimental and clinical data. Two of them correspond to the wild type and the heterozygous SCN5A V411M scenarios, and the other two mimic the effects of flecainide and ranolazine on INa. Next, we inserted them into three isolated cell action potential (AP) models for endocardial, midmyocardial and epicardial cells and in a one-dimensional tissue model. The SCN5A V411M mutation produced a 15.9% APD90 prolongation in the isolated endocardial cell model, which corresponded to a 14.3% of the QT interval prolongation in a one-dimensional strand model, in keeping with clinical observations. Although with different underlying mechanisms, flecainide and ranolazine partially countered this prolongation at the isolated endocardial model by reducing the APD90 by 8.7 and 4.3%, and the QT interval by 7.2 and 3.2%, respectively. While flecainide specifically targeted the mutation-induced increase in peak INaL, ranolazine reduced it during the entire AP. Our simulations also suggest that ranolazine could prevent early afterdepolarizations triggered by the SCN5A V411M mutation during bradycardia, as flecainide. We conclude that ranolazine could be used to treat SCN5A V411M patients, specifically when flecainide is contraindicated.

14.
Front Physiol ; 10: 847, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333496

RESUMO

Background: Atrial fibrillation (AF), the most common cardiac arrhythmia, is characterized by alteration of the action potential (AP) propagation. Under persistent AF, myocytes undergo electrophysiological and structural remodeling, which involves fibroblast proliferation and differentiation, modifying the substrate for AP propagation. The aim of this study was to analyze the effects on the AP of fibroblast-myocyte coupling during AF and its propagation in different regions of the atria. Methods: Isolated myocytes were coupled to different numbers of fibroblasts using the established AP models and tissue simulations were performed by randomly distributing fibroblasts. Fibroblast formulations were updated to match recent experimental data. Major ion current conductances of the myocyte model were modified to simulate AP heterogeneity in four different atrial regions (right atrium posterior wall, crista terminalis, left atrium posterior wall, and pulmonary vein) according to experimental and computational studies. Results: The results of the coupled myocyte-fibroblast simulations suggest that a more depolarized membrane potential and higher fibroblast membrane capacitance have a greater impact on AP duration and myocyte maximum depolarization velocity. The number of coupled fibroblasts and the stimulation frequency are determining factors in altering myocyte AP. Strand simulations show that conduction velocity tends to homogenize in all regions, while the left atrium is more likely to be affected by fibroblast and AP propagation block is more likely to occur. The pulmonary vein is the most affected region, even at low fibroblast densities. In 2D sheets with randomly placed fibroblasts, wavebreaks are observed in the low density (10%) central fibrotic zone and when fibroblast density increases (40%) propagation in the fibrotic region is practically blocked. At densities of 10 and 20% the width of the vulnerable window increases with respect to control but is decreased at 40%. Conclusion: Myocyte-fibroblast coupling characteristics heterogeneously affect AP propagation and features in the different atrial zones, and myocytes from the left atria are more sensitive to fibroblast coupling.

15.
PLoS One ; 14(6): e0217993, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211790

RESUMO

BACKGROUND: Heart failure (HF) is characterized, among other factors, by a progressive loss of contractile function and by the formation of an arrhythmogenic substrate, both aspects partially related to intracellular Ca2+ cycling disorders. In failing hearts both electrophysiological and structural remodeling, including fibroblast proliferation, contribute to changes in Ca2+ handling which promote the appearance of Ca2+ alternans (Ca-alt). Ca-alt in turn give rise to repolarization alternans, which promote dispersion of repolarization and contribute to reentrant activity. The computational analysis of the incidence of Ca2+ and/or repolarization alternans under HF conditions in the presence of fibroblasts could provide a better understanding of the mechanisms leading to HF arrhythmias and contractile function disorders. METHODS AND FINDINGS: The goal of the present study was to investigate in silico the mechanisms leading to the formation of Ca-alt in failing human ventricular myocytes and tissues with disperse fibroblast distributions. The contribution of ionic currents variability to alternans formation at the cellular level was analyzed and the results show that in normal ventricular tissue, altered Ca2+ dynamics lead to Ca-alt, which precede APD alternans and can be aggravated by the presence of fibroblasts. Electrophysiological remodeling of failing tissue alone is sufficient to develop alternans. The incidence of alternans is reduced when fibroblasts are present in failing tissue due to significantly depressed Ca2+ transients. The analysis of the underlying ionic mechanisms suggests that Ca-alt are driven by Ca2+-handling protein and Ca2+ cycling dysfunctions in the junctional sarcoplasmic reticulum and that their contribution to alternans occurrence depends on the cardiac remodeling conditions and on myocyte-fibroblast interactions. CONCLUSION: It can thus be concluded that fibroblasts modulate the formation of Ca-alt in human ventricular tissue subjected to heart failure-related electrophysiological remodeling. Pharmacological therapies should thus consider the extent of both the electrophysiological and structural remodeling present in the failing heart.


Assuntos
Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Sinalização do Cálcio/genética , Proliferação de Células/genética , Fenômenos Eletrofisiológicos , Fibroblastos/metabolismo , Fibroblastos/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/patologia , Humanos , Modelos Cardiovasculares , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia
16.
Circ Arrhythm Electrophysiol ; 12(7): e007294, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31248280

RESUMO

BACKGROUND: Phthalates are used as plasticizers in the manufacturing of flexible, plastic medical products. Patients can be subjected to high phthalate exposure through contact with plastic medical devices. We aimed to investigate the cardiac safety and biocompatibility of mono-2-ethylhexyl phthalate (MEHP), a phthalate with documented exposure in intensive care patients. METHODS: Optical mapping of transmembrane voltage and pacing studies were performed on isolated, Langendorff-perfused rat hearts to assess cardiac electrophysiology after MEHP exposure compared with controls. MEHP dose was chosen based on reported blood concentrations after an exchange transfusion procedure. RESULTS: Thirty-minute exposure to MEHP increased the atrioventricular node (147 versus 107 ms) and ventricular (117 versus 77.5 ms) effective refractory periods, compared with controls. Optical mapping revealed prolonged action potential duration at slower pacing cycle lengths, akin to reverse use dependence. The plateau phase of the action potential duration restitution curve steepened and became monophasic in MEHP-exposed hearts (0.18 versus 0.06 slope). Action potential duration lengthening occurred during late-phase repolarization resulting in triangulation (70.3 versus 56.6 ms). MEHP exposure also slowed epicardial conduction velocity (35 versus 60 cm/s), which may be partly explained by inhibition of Nav1.5 (874 and 231 µmol/L half-maximal inhibitory concentration, fast and late sodium current). CONCLUSIONS: This study highlights the impact of acute MEHP exposure, using a clinically relevant dose, on cardiac electrophysiology in the intact heart. Heightened clinical exposure to plasticized medical products may have cardiac safety implications-given that action potential triangulation and electrical restitution modifications are a risk factor for early after depolarizations and cardiac arrhythmias.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Dietilexilftalato/análogos & derivados , Equipamentos e Provisões/efeitos adversos , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Plastificantes/toxicidade , Animais , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Simulação por Computador , Dietilexilftalato/toxicidade , Desenho de Equipamento , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Preparação de Coração Isolado , Masculino , Modelos Cardiovasculares , Ratos Sprague-Dawley , Período Refratário Eletrofisiológico/efeitos dos fármacos , Medição de Risco , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo , Fatores de Tempo , Imagens com Corantes Sensíveis à Voltagem
17.
Front Physiol ; 10: 74, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804805

RESUMO

Patients suffering from heart failure and left bundle branch block show electrical ventricular dyssynchrony causing an abnormal blood pumping. Cardiac resynchronization therapy (CRT) is recommended for these patients. Patients with positive therapy response normally present QRS shortening and an increased left ventricle (LV) ejection fraction. However, around one third do not respond favorably. Therefore, optimal location of pacing leads, timing delays between leads and/or choosing related biomarkers is crucial to achieve the best possible degree of ventricular synchrony during CRT application. In this study, computational modeling is used to predict the optimal location and delay of pacing leads to improve CRT response. We use a 3D electrophysiological computational model of the heart and torso to get insight into the changes in the activation patterns obtained when the heart is paced from different regions and for different atrioventricular and interventricular delays. The model represents a heart with left bundle branch block and heart failure, and allows a detailed and accurate analysis of the electrical changes observed simultaneously in the myocardium and in the QRS complex computed in the precordial leads. Computational simulations were performed using a modified version of the O'Hara et al. action potential model, the most recent mathematical model developed for human ventricular electrophysiology. The optimal location for the pacing leads was determined by QRS maximal reduction. Additionally, the influence of Purkinje system on CRT response was assessed and correlation analysis between several parameters of the QRS was made. Simulation results showed that the right ventricle (RV) upper septum near the outflow tract is an alternative location to the RV apical lead. Furthermore, LV endocardial pacing provided better results as compared to epicardial stimulation. Finally, the time to reach the 90% of the QRS area was a good predictor of the instant at which 90% of the ventricular tissue was activated. Thus, the time to reach the 90% of the QRS area is suggested as an additional index to assess CRT effectiveness to improve biventricular synchrony.

18.
Front Physiol ; 9: 1194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190684

RESUMO

Heart failure (HF) is characterized by altered Ca2+ cycling, resulting in cardiac contractile dysfunction. Failing myocytes undergo electrophysiological remodeling, which is known to be the main cause of abnormal Ca2+ homeostasis. However, structural remodeling, specifically proliferating fibroblasts coupled to myocytes in the failing heart, could also contribute to Ca2+ cycling impairment. The goal of the present study was to systematically analyze the mechanisms by which myocyte-fibroblast coupling could affect Ca2+ dynamics in normal conditions and in HF. Simulations of healthy and failing human myocytes were performed using established mathematical models, and cells were either isolated or coupled to fibroblasts. Univariate and multivariate sensitivity analyses were performed to quantify effects of ion transport pathways on biomarkers computed from intracellular [Ca2+] waveforms. Variability in ion channels and pumps was imposed and populations of models were analyzed to determine effects on Ca2+ dynamics. Our results suggest that both univariate and multivariate sensitivity analyses are valuable methodologies to shed light into the ionic mechanisms underlying Ca2+ impairment in HF, although differences between the two methodologies are observed at high parameter variability. These can result from either the fact that multivariate analyses take into account ion channels or non-linear effects of ion transport pathways on Ca2+ dynamics. Coupling either healthy or failing myocytes to fibroblasts decreased Ca2+ transients due to an indirect sink effect on action potential (AP) and thus on Ca2+ related currents. Simulations that investigated restoration of normal physiology in failing myocytes showed that Ca2+ cycling can be normalized by increasing SERCA and L-type Ca2+ current activity while decreasing Na+-Ca2+ exchange and SR Ca2+ leak. Changes required to normalize APs in failing myocytes depended on whether myocytes were coupled to fibroblasts. In conclusion, univariate and multivariate sensitivity analyses are helpful tools to understand how Ca2+ cycling is impaired in HF and how this can be exacerbated by coupling of myocytes to fibroblasts. The design of pharmacological actions to restore normal activity should take into account the degree of fibrosis in the failing heart.

19.
J Chem Inf Model ; 58(4): 867-878, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29547274

RESUMO

Drug-induced proarrhythmicity is a major concern for regulators and pharmaceutical companies. For novel drug candidates, the standard assessment involves the evaluation of the potassium hERG channels block and the in vivo prolongation of the QT interval. However, this method is known to be too restrictive and to stop the development of potentially valuable therapeutic drugs. The aim of this work is to create an in silico tool for early detection of drug-induced proarrhythmic risk. The system is based on simulations of how different compounds affect the action potential duration (APD) of isolated endocardial, midmyocardial, and epicardial cells as well as the QT prolongation in a virtual tissue. Multiple channel-drug interactions and state-of-the-art human ventricular action potential models ( O'Hara , T. , PLos Comput. Biol. 2011 , 7 , e1002061 ) were used in our simulations. Specifically, 206.766 cellular and 7072 tissue simulations were performed by blocking the slow and the fast components of the delayed rectifier current ( IKs and IKr, respectively) and the L-type calcium current ( ICaL) at different levels. The performance of our system was validated by classifying the proarrhythmic risk of 84 compounds, 40 of which present torsadogenic properties. On the basis of these results, we propose the use of a new index (Tx) for discriminating torsadogenic compounds, defined as the ratio of the drug concentrations producing 10% prolongation of the cellular endocardial, midmyocardial, and epicardial APDs and the QT interval, over the maximum effective free therapeutic plasma concentration (EFTPC). Our results show that the Tx index outperforms standard methods for early identification of torsadogenic compounds. Indeed, for the analyzed compounds, the Tx tests accuracy was in the range of 87-88% compared with a 73% accuracy of the hERG IC50 based test.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Simulação por Computador , Eletrocardiografia/efeitos dos fármacos , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Modelos Biológicos , Medição de Risco , Fatores de Tempo
20.
Trends Cardiovasc Med ; 28(4): 233-242, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29203397

RESUMO

Potassium levels in the plasma, [K+]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K+]o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K+-sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential. Even small changes (~1mM) in [K+]o result in significant alterations in two different K+ currents, IK1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K+ currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/etiologia , Frequência Cardíaca , Ventrículos do Coração/metabolismo , Hipopotassemia/complicações , Canais de Potássio/metabolismo , Potássio/sangue , Animais , Arritmias Cardíacas/sangue , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Biomarcadores/sangue , Ventrículos do Coração/fisiopatologia , Humanos , Hipopotassemia/sangue , Hipopotassemia/diagnóstico , Hipopotassemia/fisiopatologia , Cinética , Modelos Cardiovasculares , Prognóstico , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...