Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37947949

RESUMO

Butia capitata endocarp (BCE) is a biomass residue with the potential to produce a wide variety of bio-products. The processing of BCE in a sequential process of subcritical water hydrolysis (SWH) and hydrothermal liquefaction (HTL) was investigated to obtain fermentable sugars, platform chemicals, bio-oil, and biochar. The SWH was evaluated at 230 and 260 °C and solvent: feed mass ratios (R) of 10 and 20 for the production of fermentable sugars and platform chemicals. The solid residue from SWH was sequentially submitted to the HTL at 330 and 360 °C for bio-oil and biochar production. The results were analyzed by comparing the sequential (SWH/HTL) and individual (HTL only) processes. The highest yields of fermentable sugars (5.26 g/ 100 g BCE) were obtained for SWH at 260 °C and R-20 with higher contents of xylose (2.64 g/100 g BCE) and cellobiose (1.75 g/100 g BCE). The highest yields of platform chemicals (2.44 g/100 g BCE) were obtained for SWH at 260 °C and R-10 with higher contents of acetic acid (1.78 g/100 g BCE) and furfural (0.54 g/100 g BCE). The highest yield of bio-oil (25.30 g/100 g BCE) occurred in HTL individual process at 360 °C and R-20. Sequential process SWH/HTL showed a decrease in bio-oil yield but maintained a similar biochar yield compared to HTL, in addition to the production of fermentable sugars and platform chemicals.

2.
World J Microbiol Biotechnol ; 39(11): 287, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632593

RESUMO

The fungi-based technology provided encouraging scenarios in the transition from a conventionally based economic system to the potential security of sources closely associated with the agricultural sphere such as the agriculture. In recent years, the intensification of fungi-based processes has generated significant gains, additionally to the production of materials with significant benefits and strong environmental importance. Furthermore, the growing concern for human health, especially in the agriculture scenario, has fostered the investigation of organisms with high biological and beneficial potential for use in agricultural systems. Accordingly, this study offered a comprehensive review of the diversity of the soil fungal microbiome and its main applications in a biotechnological approach aimed at agriculture and food chain-related areas. Moreover, the spectrum of opportunities and the extensive optimization platform for obtaining fungi compounds and metabolites are discussed. Finally, future perspectives regarding the insurgency of innovations and challenges on the broad rise of visionary solutions applied to the biotechnology context are provided.


Assuntos
Micobioma , Solo , Humanos , Agricultura , Biotecnologia , Cadeia Alimentar
3.
J Food Sci Technol ; 60(1): 84-91, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618061

RESUMO

An important factor resulted from the ascension of the milk and milk-based by-products production is many effluents directly released into the environment. The main objective of this study was to evaluate the efficiency of the combination of the chemical coagulation, with ferric chloride as a coagulant, and the membrane separation processes (MSP) and reverse osmosis (RO) processes in the treatment of effluents from a powdered milk dairy industry. To evaluate the effectiveness of the integration of these mechanisms, the characterization of the effluents was carried out through Total Nitrogen (Ntotal), Total Organic Carbon (TOC), Chemical Oxygen Demand (COD), color, pH, and turbidity analysis. Regarding the treatments with ferric chloride, the Ntotal removal was up to 55.7% (concentration of 1.2 g L- 1) and the color up to 50% (0.7 g L- 1). For the MSP and RO treatments, the color removal was up to 100% (1st RO), turbidity up to 100% (1st RO), COD up to 98.7% (3rd RO), and TOC up to 96.7% (3rd RO). Finally, the integration of the chemical coagulation and MSP processes was efficient for the treatment of dairy industry wastewater and provides the return of water in appropriate characteristics according to legislation.

4.
Food Sci Technol Int ; 29(3): 255-265, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34939457

RESUMO

There are many blackberry cultivars in Brazil; however, the characteristics and applications of the Cherokee cultivar have not yet been widely studied. For this reason, this research investigated the behaviour of maltodextrin (MD), gum Arabic (GA), and pectin (PEC), as carriers combined in different proportions (20% MD, 15% MD + 5% GA, 15% MD + 5% PEC), on encapsulation of Cherokee blackberry pulp extract obtained by freeze-drying. The results of moisture content (2.73-3.36%), water activity (aw) (0.11-0.15), solubility (52.40-54.11%), hygroscopicity (17.59-21.11%), colour (hue 0.24-0.32), retention of anthocyanins (51.55-60.53%), total phenolic compounds (39.72-70.73 mg GAE/100g), antioxidant activity at 25 mg/mL (77.89-80.02%), IC50 (12.26-14.53), simulated in vitro digestion and morphology were discussed. Concerning morphology, blackberry powders had irregular structures and amorphous structures. Comparatively, the best results were obtained for MD-GA. MD-GA presented the highest content of phenolic compounds (70.73 ± 1.84 mg GAE/100g) and antioxidant activity (80.02%), as well as the lowest IC50 value (12.26). In general, all powders showed an increase in phenolic compounds during in vitro digestion, because of the pH conditions and digestive enzymes present in the simulated digestive fluid. This result shows that the wall material provides protection, since the blackberry rich extract (RE) showed degradation of phenolic compounds in in vitro digestion. In this sense, freeze-drying is a suitable technique for the encapsulation of Cherokee blackberry pulp extract.


Assuntos
Goma Arábica , Rubus , Goma Arábica/química , Antioxidantes/química , Rubus/química , Brasil , Pectinas , Antocianinas/química , Composição de Medicamentos/métodos , Fenóis/química
5.
3 Biotech ; 12(5): 122, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35547017

RESUMO

Cell wall degrading enzymes (chitinase and ß-1,3-glucanase) were produced by solid-state fermentation (SSF) using the fungus Trichoderma harzianum and different agro-industrial products, mainly residues. The influence of temperature (25-35 °C), initial moisture content (50-90% w/w), nutrient solution (1-2% v/w), and yeast extract (1-2% w/w) on enzyme activity was evaluated. The application of ultrasound during fermentation for different times (0-6 h/day) was also studied. White rice was the substrate that showed the highest chitinase and ß-1,3-glucanase activities, which were 31.31 U/g for chitinase and 23.83 U/g for ß-1,3-glucanase after 10 days of fermentation. Application of ultrasound waves during fermentation positively affected (p < 0.05) the enzyme activities. The best results for chitinase (51.88 U/g) and ß-1,3-glucanase (39.22 U/g) were obtained with a 50% (w/w) moisture content and 4 h/day ultrasound application for 10 days of fermentation. Increases of 3.6-fold (from 14.37 to 51.88 U/g) and 3.8-fold (from 10.22 to 39.22 U/g) in activities for chitinase and ß-1,3-glucanase, respectively, compared to non-sonicated fermentation, were obtained. Ultrasound technique associated with the SSF process was a promising alternative to increase the production activity of cell wall degrading enzymes: chitinase and ß-1,3-glucanase.

6.
Environ Sci Pollut Res Int ; 29(45): 68547-68554, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35543787

RESUMO

The valorization of agro-industrial residues can be improved through their full use, making the production of second-generation ethanol viable. In this scenario, hydrolyzed soybean straw generated from a subcritical water process was applied to the basic fuchsin adsorption. At pH eight, a high adsorption capacity was obtained. The mass test results showed that basic fuchsin's removal and adsorption capacity could be maximized with an adsorbent dosage of 0.9 g L-1. The linear driving force model was suitable for predicting the kinetic profile, and the kinetic curves showed that equilibrium was reached with only 30 min of contact time. Besides, the Langmuir model was the best to predict the adsorption isotherms. The thermodynamic parameters revealed a spontaneous and endothermic process. At 328 K, there is maximum adsorption capacity (72.9 mg g-1). Therefore, it can be stated that this material could be competitive in terms of adsorption capacity coupled with the idea of full use of waste.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Etanol , Concentração de Íons de Hidrogênio , Cinética , Corantes de Rosanilina , Glycine max , Termodinâmica , Água/química , Poluentes Químicos da Água/química
7.
Bioresour Technol ; 356: 127335, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35589043

RESUMO

Eversa® Transform 2.0 lipase used as biocatalyst to biodiesel (fatty acid methyl esters - FAME) synthesis has been the target of interesting studies due to its thermostability and cost-effectiveness. In these researches, data about reaction conditions that result in satisfactory yields were investigated. Nevertheless, kinetic and thermodynamic parameters considering this enzyme are scarce. This paper presents an estimation of kinetic and thermodynamic parameters for the Eversa® Transform 2.0-mediated hydroesterification to FAME synthesis. Kinetic studies were performed for different methanol, water and lipase loads in distinct temperatures. Parameters adjusted by the thermodynamic model indicate that the hydrolysis is decisive in the overall hydroesterification reaction rate and the esterification reaction is endothermic (ΔHe = 38.98 kJ/mol). Formation of enzymatic complexes is favored by increasing the temperature, especially the enzyme-methanol inhibition complex. Statistical analysis showed that the model was not overparameterized, and the small confidence interval indicated good reliability of the estimated parameters.


Assuntos
Enzimas Imobilizadas , Metanol , Biocombustíveis , Enzimas Imobilizadas/metabolismo , Esterificação , Ésteres , Ácidos Graxos , Cinética , Lipase/metabolismo , Reprodutibilidade dos Testes , Termodinâmica
8.
Bioresour Technol ; 342: 126033, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592451

RESUMO

The hemicellulosic fraction recovery is of interest for integrated processes in biorefineries, considering the possibility of high economic value products produced from their structural compounds of this polysaccharide. However, to perform an efficient recovery, it is necessary to use biomass fractionation techniques, and hydrothermal pretreatment is highlighted as a valuable technique in the hemicellulose recovery by applying high temperatures and pressure, causing dissolution of the structure. Considering the possibility of this pretreatment technique for current approaches to hemicellulose recovery, this article aimed to explore the relevance of hydrothermal pretreatment techniques (sub and supercritical water) as a strategy for recovering the hemicellulosic fraction from lignocellulosic biomass. Discussions about potential products to be generated, current market profile, and perspectives and challenges of applying the technique are also addressed.


Assuntos
Lignina , Polissacarídeos , Biomassa , Hidrólise
9.
3 Biotech ; 11(6): 284, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34094803

RESUMO

Several plant species synthesize biologically active secondary metabolites. Pyrrolizidine alkaloids are a large group of biotoxins produced by thousands of plant species to protect against the attack of insects and herbivores, but they are highly toxic for humans and animals. In this study, extracts from the aerial part of Senecio brasiliensis were obtained using different technologies: ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and microwave hydrodiffusion and gravity (MHG). The study aimed to evaluate the effectiveness of these technologies for the extraction of chemical compounds found in this plant, focusing on two pyrrolizidine alkaloids: integerrimine and senecionine. Influential parameters on yield and chemical composition were also evaluated: for UAE and MHG, temperature and pressure; for PLE, temperature, and percentage of ethanol. All the extraction techniques were efficient for the extraction of integerrimine and senecionine. The UAE and PLE stood out for the higher yields and number of compounds. The PLE presented a maximum yield of 18.63% for the matrix leaf and the UAE a maximum yield of 11.82% for the same matrix. These two techniques also stood out in terms of the number of compounds, once 36 different compounds were found via PLE and 17 via UAE. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02845-1.

10.
Appl Microbiol Biotechnol ; 105(8): 3009-3018, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33770245

RESUMO

Modern agriculture has been facing new challenges and fostering innovations to establish sustainable plant production. An integral part of these strategies is implementing new eco-friendly technologies in plant protection for better human health and a safer environment by minimizing the use of hazardous chemicals and also encouraging innovations such as the use of bio-based strategies for weed control. This specific strategy addresses the need to reduce the use and risk of pesticides, replacing conventional chemical herbicides with new bio-based solutions. In response to these issues, biocontrol strategies are gaining increased attention from stakeholders such as farmers, seed companies, agronomists, breeders, and consumers. Among these, bioherbicides have huge potential for the management of harmful weeds without affecting the natural quality of the environment and human health. In this context, this review is devoted to present an overview of the mycoherbicidal potential of Phoma sensu lato group of fungi, examining the advances in this field, including technological and scientific challenges and outcomes achieved in recent years. The mycoherbicides are eco-friendly and economically viable. KEY POINTS: • Some Phoma species have demonstrated herbicide activity. • These species secrete secondary metabolites responsible for the control of weeds. • They can be used as non-chemical, cost-effective, and eco-friendly bioherbicides.


Assuntos
Herbicidas , Phoma , Agricultura , Humanos , Plantas Daninhas , Controle de Plantas Daninhas
11.
Bioresour Technol ; 328: 124837, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33607449

RESUMO

The objective of this study was to evaluate the ethanol production by Wickerhamomyces sp. using soybean straw and hull hydrolysates obtained by subcritical water hydrolysis and, afterward, the biogas production using the fermented hydrolysates. Ethanol was produced using the straw and hull hydrolysates diluted and supplement with glucose, reaching 5.57 ± 0.01 g/L and 6.11 ± 0.11 g/L, respectively. The fermentation in a bioreactor with changing the pH to 7.0 allowed achieving maximum ethanol production of 4.03 and 3.60 g/L for straw and hull hydrolysates at 24 h, respectively. The biogas productions obtained for the fermented hydrolysates of straw with and without changing the pH were 739 ± 37 and 652 ± 34 NmL/gVSad, respectively. The fermented hydrolysate of hull without changing the pH presented 620 ± 26 NmL/gVSad. The soybean residues produced biofuels, indicating these residues show potential as raw material for renewable energy production.


Assuntos
Biocombustíveis , Glycine max , Fermentação , Hidrólise , Água
12.
Bioprocess Biosyst Eng ; 44(4): 769-783, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389169

RESUMO

Ultrasound-assisted extraction (UAE) and pressurized hot water extraction (PHWE) were tested as advanced clean methods to obtain polysaccharides from Phoma dimorpha mycelial biomass. These methods were compared to conventional extraction (hot water extraction, HWE) in terms of polysaccharides-enriched fractions (PEF) yield. A central composite rotational design was performed for each extraction method to investigate the influence of independent variables on the yield and to help the selection of the condition with the highest yield using water as an extraction solvent. The best extraction condition of PEF yielded 12.02 wt% and was achieved when using UAE with direct sonication for 30 min under the intensity of 75.11 W/cm2 and pulse factor of 0.57. In the kinetic profiles, the highest yield (15.28 wt%) was obtained at 50 °C under an ultrasound intensity of 75.11 W/cm2 and a pulse factor of 0.93. Structural analysis of extracted polysaccharide was performed using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal property. The water solubility index, water holding capacity, and emulsification index of PEF were 31.3 ± 1.5%, 138.1 ± 3.2%, and 62.9 ± 2.3%, respectively. The submerged fermentation demonstrates the huge potential of Phoma dimorpha to produce polysaccharides with bioemulsifying properties as a biotechnologically cleaner alternative if compared to commercial petroleum-derived compounds. Furthermore, UAE and PHWE are green technologies, which can be operated at an industrial scale for PEF extraction.


Assuntos
Ascomicetos/metabolismo , Biomassa , Microbiologia Industrial/métodos , Micélio/química , Polissacarídeos/química , Água/química , Biotecnologia , Fermentação , Química Verde , Cinética , Microscopia Eletrônica de Varredura , Petróleo , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Ultrassom , Difração de Raios X
13.
Environ Technol ; 42(1): 126-133, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31132009

RESUMO

Poultry processing plants generate large amounts of wastewater in the many steps necessary to provide high quality and safe products. Carcass chilling is one of these steps, where the temperature of the carcass is reduced from 40°C to 4°C, for reducing the growth rate of microorganisms and affecting flavour, texture and appearance. In this operation, carcasses are continually displaced through a series of two tanks (called pre-chiller and chiller) filled with cold water, thus being responsible for a considerable amount of wastewater generation. This work aimed to regenerate the wastewater of the pre-chiller tank employing microfiltration (pore size 0.10 and 0.20 µm) and ultrafiltration (UF; MWCO 10 and 50 kDa) polymeric membranes in bench and pilot scales, with the final purpose of reuse. Membrane performance was evaluated in terms of the capacity of removing the contaminants and producing sufficient permeate flux in different working pressures. Bench-scale UF membrane presented the highest initial permeate flux of 112.1 L/m2h at 200 kPa. The four membranes tested presented good retention of microorganisms, with apparent rejection of up to 100%. Pilot-scale membranes presented better apparent rejection, with retentions above 99% for turbidity, apparent colour and fat content. Moreover, organic matter retention was also very high, up to 94% for chemical oxygen demand and 92% for total organic carbon. The use of membranes seems to be a promising approach for recycling and reuse of poultry pre-chiller wastewater.


Assuntos
Galinhas , Purificação da Água , Animais , Membranas Artificiais , Ultrafiltração , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
14.
Bioresour Technol ; 306: 123129, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32172095

RESUMO

Pecan cultivation has increased in recent years. Consequently, the amount of lignocellulosic residuals from its production has expanded. Thus, there is a necessity to explore and add value to their coproducts. The objective of this work was to obtain reducing sugars from pecan biomasses by the optimization of the subcritical water hydrolysis technology in a semi-continuous mode and the physicochemical and morphological characterization of these materials, such as SEM, TGA and FT-IR analysis. Temperatures of 180, 220 and 260 °C, water/solids mass ratio of 15 and 30 g water/g biomass and total reaction time of 15 min were used. The highest reducing sugar yield was 27.1 g/100 g of biomass, obtained at 220 °C and R-15 for pecan shells. TGA, SEM and FT-IR analysis indicated the modifications of structures and compositions of biomasses in fresh and hydrolyzed samples.

15.
Environ Technol ; 41(21): 2742-2749, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30734639

RESUMO

Exopolysaccharides are secondary metabolites produced by microorganisms and are a subject of research in many fields of science and industry due to some of their confirmed properties, especially in the pharmaceutical and agrochemical areas. In this context, the objectives of this work were to evaluate the potential of Fusarium fujikuroi for producing exopolysaccharides and to concentrate such compounds in order to increase the herbicidal activity. Exopolysaccharides were produced by submerged fermentation and different concentration methods (membranes, lyophilization, and evaporation) were evaluated. The phytotoxic effects were assessed through absorption assays in detached leaves of Cucumis sativus and evaluated on the seventh day after application. The surface tension was evaluated for each concentration method. The production of exopolysaccharides in the crude broth without concentration was 5.94 g/L. When using the lyophilization method, a maximum yield of exopolysaccharides of 10.64 g/L was obtained. The membranes also presented satisfactory results of exopolysaccharides: 9.60 g/L. The increase of bioherbicidal activity and the lower surface tension are proportionally related to the increase of the concentration of exopolysaccharides.


Assuntos
Fusarium , Herbicidas , Fermentação
16.
Biotechnol Appl Biochem ; 67(4): 648-667, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31596510

RESUMO

Enzymatic synthesis of biodiesel showed advantageous characteristics in relation to other technologies once it works under bland conditions, no generation of wastewater, no occurrence of saponifications reactions and production of a biodiesel with high quality. Although many researches still apply immobilized lipases, the high costs associated with this biocatalyst hamper the economic viability of the process. Lipases in free/soluble/liquid formulation employed to biodiesel production via hydroesterification reaction have attracted interest from researchers because they are more cost effective than the immobilized form, making the enzymatic route more competitive. In addition, soluble lipases present higher reaction rates, reducing the time required to obtain a satisfactory biodiesel yield. Despite the fact that already exist industrial plants producing biodiesel with the assistance of lipases in liquid formulation, results of researches show that the process still needs to overcome some drawbacks. This paper is a comprehensive and critical discussion on the publications where soluble lipases were applied on biodiesel synthesis, as well as the challenges that the technology faces and its current status in pilot and industrial applications.


Assuntos
Biocombustíveis , Enzimas Imobilizadas/química , Lipase/química , Óleos de Plantas/química , Esterificação
17.
Appl Microbiol Biotechnol ; 103(18): 7805-7817, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31414164

RESUMO

The application of lipases in liquid formulation instead of immobilized forms in the enzymatic biodiesel synthesis can make the process cost-efficient, more competitive, and sustainable. However, despite the benefits, the long reaction times required to achieve satisfactory yields is still a drawback of this biotechnological process. In this sense, employing the novel low-cost soluble NS40116 lipase, this paper proposes an innovative two-step hydroesterification reaction (TSHR) system as a technique of improving the reaction rate of an enzymatic biodiesel production. With the employment of two central composite statistical design to optimize the parameters of each of the reactions involved, the influence of the parameters "water concentration added to the reaction," "methanol-to-oil molar ratio," and "lipase load" on the process yield, besides the acid value of the samples, was investigated. After only 8 h of reaction, the highest fatty acid methyl ester yield reached was 97.1% with an acid value of 4.62 mg KOH g-1 utilizing a total of 8 wt% water, methanol-to-oil molar ratio of 6.3:1, and 0.70 wt% of lipase. Furthermore, the statistical models for both reactions indicated to be significant with 95% of reliability. Considering that the papers published using soluble lipases in a one-step batch process normally reach similar yields to those obtained in this research after 16 h to 24 h of reaction, the proposed system demonstrated to be a promising option of process configuration for the enzymatic production of biodiesel.


Assuntos
Biocombustíveis , Lipase/metabolismo , Metanol/metabolismo , Óleos de Plantas/metabolismo , Biotecnologia , Catálise , Esterificação , Ácidos Graxos/metabolismo , Reprodutibilidade dos Testes
18.
Bioresour Technol ; 284: 25-35, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30925420

RESUMO

The potential of rice husks and straw as adsorbents after being processed by subcritical water hydrolysis (SWH) was investigated. The influences of temperature (453, 493 and 533 K) and liquid/solid ratio (7.5 and 15 g water/g biomass) on the rice straw and rice husks characteristics and on the adsorption capacity of 2-nitrophenol were evaluated at pH 4 and 7. Adsorption kinetics, equilibrium and thermodynamic parameters were also studied. The adsorption capacity was favored at pH 7. Pseudo-first-order model was suitable to predict the kinetic curves for 2-nitrophenol concentrations of 25, 50, 75 and 100 mg/L and the isotherm data obeyed the Freundlich model. Overall, the thermodynamic results revealed a spontaneous and exothermic process. The maximum adsorption capacity (92.97 ±â€¯1.31 mg/g) was obtained for rice straw that has undergone an SWH at 453 K and 7.5 g water/g straw. The integration of processes to valorize co-products can make the production of cellulosic bioethanol more feasible.


Assuntos
Nitrofenóis/química , Oryza/química , Água/química , Adsorção , Biomassa , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Termodinâmica
19.
Appl Biochem Biotechnol ; 188(4): 914-926, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30729422

RESUMO

The performance of lipase NS 40116, a novel and promising soluble enzyme obtained from modified Thermomyces lanuginosus microorganism, was investigated in the production of biodiesel (fatty acid methyl esters-FAME) by hydroesterification. In order to investigate the potential of the biocatalyst in its soluble form, this work reports the effect of water content and enzyme load, as well as the recovery and reuse of the biocatalyst. A FAME yield of 94.30% after 12 h was achieved at 35 °C by combining 0.50 wt% of lipase, 15 wt% of water, and a methanol:oil molar ratio of 4.5:1. The analysis of the time course reaction suggests that the triacylglycerides (TAGs) are hydrolyzed by the enzyme in a first step, generating free fatty acids (FFAs), followed by the esterification of these FFAs into FAME. In relation to the reusability assays, the lipase kept approximately 90% of its catalytic activity after five cycles of reuse. In this context, the findings of this study demonstrate that lipase NS 40116 can efficiently catalyze hydroesterification reactions under mild conditions, arising as a competitive alternative for biodiesel synthesis.


Assuntos
Biocombustíveis , Lipase/metabolismo , Proteínas de Plantas/metabolismo , Óleo de Soja/metabolismo , Catálise , Hidrólise , Óleo de Soja/química
20.
Environ Technol ; 40(18): 2364-2372, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29441820

RESUMO

This study is focused on the concentration of fermented broth from Phoma sp. to increase its herbicidal activity. For this purpose, biomolecules produced by submerged fermentation using Phoma sp. were concentrated by hollow fiber microfiltration membranes. The membrane feed was separated into two streams (retentate and permeate) and the crude broth was concentrated to 10, 30, 50, 70 and 90% (relative to the initial volume). The retentate samples were submitted to bioassays (triplicate) for evaluating their phytotoxic effects on five young leaves of species of Cucumis sativus and also on pre-emergence of weeds as Bidens pilosa and Amaranthus retroflexus. The highest herbicidal activity was 80.7% obtained for a concentration of 30% in the retentate fraction. At this condition, the bioherbicide presented severe damage symptoms on the detached leaves of Cucumis sativus if compared to the crude fermented broth. In the pre-emergence of B. pilosa and A. retroflexus, 100% control was obtained for assays performed in a germination chamber. For greenhouse assays using the substrate, the control rate of A. retroflexus was dependent of concentration of bioherbicide. The promising results achieved in the research with membrane separation process allow us to propose and develop further studies for evaluating this technology in the concentration of other metabolites produced by fermentation which also have bioherbicidal activity.


Assuntos
Amaranthus , Herbicidas , Fermentação , Germinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...