Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198157

RESUMO

The aim of this paper is to shed light on the application of graphene oxide (GO) membranes for the selective removal of benzene, toluene, and xylene (BTX) from wastewater. These molecules are present in traces in the water produced from oil and gas plants and are treated now with complex filtration systems. GO membranes are obtained by a simple, fast, and scalable method. The focus of this work is to prove the possibility of employing GO membranes for the filtration of organic contaminants present in traces in oil and gas wastewater, which has never been reported. The stability of GO membranes is analyzed in water solutions with different pH and salinity. Details of the membrane preparation are provided, resulting in a crucial step to achieve a good filtration performance. Material characterization techniques such as electron microscopy, x-ray diffraction, and infrared spectroscopy are employed to study the physical and chemical structure of GO membranes, while gas chromatography, UV-visible spectroscopy, and gravimetric techniques allow the quantification of their filtration performance. An impressive rejection of about 90% was achieved for 1 ppm of toluene and other pollutants in water, demonstrating the excellent performance of GO membranes in the oil and gas field.

2.
Materials (Basel) ; 13(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012823

RESUMO

A simple, low cost, and "green" method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.

3.
Materials (Basel) ; 13(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861538

RESUMO

Nanostructured materials possess unique physical-chemical characteristics and have attracted much attention, among others, in the field of energy conversion and storage devices, for the possibility to exploit both their bulk and surface properties, enabling enhanced electron and ion transport, fast diffusion of electrolytes, and consequently high efficiency in the electrochemical processes. In particular, titanium dioxide received great attention, both in the form of amorphous or crystalline material for these applications, due to the large variety of nanostructures in which it can be obtained. In this paper, a comparison of the performance of titanium dioxide prepared through the oxidation of Ti foils in hydrogen peroxide is reported. In particular, two thermal treatments have been compared. One, at 150 °C in Ar, which serves to remove the residual hydrogen peroxide, and the second, at 450 °C in air. The material, after the treatment at 150 °C, results to be not stoichiometric and amorphous, while the treatment at 450 °C provide TiO2 in the anatase form. It turns out that not-stoichiometric TiO2 results to be a highly stable material, being a promising candidate for applications as high power Li-ion batteries, while the anatase TiO2 shows lower cyclability, but it is still promising for energy-storage devices.

4.
ACS Appl Mater Interfaces ; 9(43): 37797-37803, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994288

RESUMO

With the purpose of achieving stable dye-sensitized solar cells (DSSCs) with high efficiency, a new type of soft matter electrolyte is tested in which specific amounts of nanosized silica particles are finely dispersed in short-chained polyethylene glycol dimethylether encompassing an iodide/triiodide redox mediator. This results in a solid-liquid composite having synergistic electrical and favorable mechanical properties. The combination of interfacial effects and particle network formation promotes enhanced ion transport, which directly impacts the short-circuit photocurrent density. Thorough analysis reveals that this newly elaborated class of electrolytes is able to improve, at the same time, the thermal and long-term stability of DSSCs, as well as power conversion efficiency under standard and lower irradiation intensities. Lab-scale devices with champion efficiency exceeding 11% under attenuated sunlight (20 mW cm-2, with a compact TiO2 blocking layer) are obtained, along with impressively stable performance under both thermal stress and light soaking in an indoor environment (>96% performance retention after 2500 h of accelerated aging under full sun alternated with thermal ramps), matching the durability criteria applied to silicon solar cells for outdoor applications. The new findings might foster widespread practical application of DSSCs.

5.
Nanotechnology ; 28(17): 174002, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28282299

RESUMO

In certain polymers the graphenization of carbon atoms can be obtained by laser writing owing to the easy absorption of long-wavelength radiation, which generates photo-thermal effects. On a polyimide surface this process allows the formation of a nanostructured and porous carbon network known as laser-induced graphene (LIG). Herein we report on the effect of the process parameters on the morphology and physical properties of LIG nanostructures. We show that the scan speed and the frequency of the incident radiation affect the gas evolution, inducing different structure rearrangements, an interesting nitrogen self-doping phenomenon and consequently different conduction properties. The materials were characterized by infrared and Raman spectroscopy, XPS elemental analysis, electron microscopy and electrical/electrochemical measurements. In particular the samples were tested as interdigitated electrodes into electrochemical supercapacitors and the optimized LIG arrangement was tested in parallel and series supercapacitor configurations to allow power exploitation.

6.
ACS Appl Mater Interfaces ; 8(48): 32842-32852, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934173

RESUMO

A hybrid aerogel, composed of MoS2 sheets of 1T (distorted octahedral) and 2H (trigonal prismatic) phases, finely mixed with few layers of reduced graphene oxide (rGO) and obtained by means of a facile environment-friendly hydrothermal cosynthesis, is proposed as electrode material for supercapacitors. By electrochemical characterizations in three- and two-electrode configurations and symmetric planar devices, unique results have been obtained, with specific capacitance values up to 416 F g-1 and a highly stable capacitance behavior over 50000 charge-discharge cycles. The in-depth morphological and structural characterizations through field emission scanning electron microscopy, Raman, X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller, and transmission electron microscopy analysis provides the proofs of the unique assembly of such 3D structured matrix. The unpacked MoS2 structure exhibits an excellent distribution of 1T and 2H phase sheets that are highly exposed to interaction with the electrolyte, and so available for surface/near-surface redox reactions, notwithstanding the quite low overall content of MoS2 embedded in the reduced graphene oxide (rGO) matrix. A comparison with other "more conventional" hybrid rGO-MoX2 electrochemically active materials, synthesized in the same conditions, is provided to support the outstanding behavior of the cosynthesized rGO-MoS2.

7.
ACS Appl Mater Interfaces ; 8(16): 10459-65, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27035410

RESUMO

Herein, we are reporting a rapid one-pot synthesis of MoS2-decorated laser-induced graphene (MoS2-LIG) by direct writing of polyimide foils. By covering the polymer surface with a layer of MoS2 dispersion before processing, it is possible to obtain an in situ decoration of a porous graphene network during laser writing. The resulting material is a three-dimensional arrangement of agglomerated and wrinkled graphene flakes decorated by MoS2 nanosheets with good electrical properties and high surface area, suitable to be employed as electrodes for supercapacitors, enabling both electric double-layer and pseudo-capacitance behaviors. A deep investigation of the material properties has been performed to understand the chemical and physical characteristics of the hybrid MoS2-graphene-like material. Symmetric supercapacitors have been assembled in planar configuration exploiting the polymeric electrolyte; the resulting performances of the here-proposed material allow the prediction of the enormous potentialities of these flexible energy-storage devices for industrial-scale production.

8.
J Nanosci Nanotechnol ; 15(8): 5993-6000, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26369186

RESUMO

UV-Vis spectroscopic measurements have been performed on Dye-Sensitized Solar Cell (DSSC) photoanodes at different dye impregnation times ranging from few minutes to 24 hours. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance of dye impregnated thin films and on the desorption of dye molecules from the photoanodes by means of a basic solution, an alternative in-situ solution depletion measurement, which enables fast and continuous evaluation of dye uptake, has been employed. Two different nanostructured semiconducting oxide films (mesoporous TiO2 and sponge-like ZnO) and two different dyes, the traditional Ruthenizer 535-bisTBA (N719) and a newly introduced metal-free organic dye based on a hemi-squaraine molecule (CT1), have been analyzed. DSSCs have been fabricated with the dye-impregnated photoanodes using a customized microfluidic architecture. The dye adsorption results are discussed and correlated to the obtained DSSC electrical performances such as photovoltaic conversion efficiencies and Incident Photon-to-electron Conversion Efficiency (IPCE) spectra. It is shown that simple UV-Vis measurements can give useful insights on the dye adsorption mechanisms and on the evaluation of the optimal impregnation times.

9.
Phys Chem Chem Phys ; 17(12): 7775-86, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25715190

RESUMO

Titanium dioxide (TiO2) and zinc oxide (ZnO) nanostructures have been widely used as photo-catalysts due to their low-cost, high surface area, robustness, abundance and non-toxicity. In this work, four TiO2 and ZnO-based nanostructures, i.e. TiO2 nanoparticles (TiO2 NPs), TiO2 nanotubes (TiO2 NTs), ZnO nanowires (ZnO NWs) and ZnO@TiO2 core-shell structures, specifically prepared with a fixed thickness of about 1.5 µm, are compared for the solar-driven water splitting reaction, under AM1.5G simulated sunlight. Complete characterization of these photo-electrodes in their structural and photo-electrochemical properties was carried out. Both TiO2 NPs and NTs showed photo-current saturation reaching 0.02 and 0.12 mA cm(-2), respectively, for potential values of about 0.3 and 0.6 V vs. RHE. In contrast, the ZnO NWs and the ZnO@TiO2 core-shell samples evidence a linear increase of the photocurrent with the applied potential, reaching 0.45 and 0.63 mA cm(-2) at 1.7 V vs. RHE, respectively. However, under concentrated light conditions, the TiO2 NTs demonstrate a higher increase of the performance with respect to the ZnO@TiO2 core-shells. Such material-dependent behaviours are discussed in relation with the different charge transport mechanisms and interfacial reaction kinetics, which were investigated through electrochemical impedance spectroscopy. The role of key parameters such as electronic properties, specific surface area and photo-catalytic activity in the performance of these materials is discussed. Moreover, proper optimization strategies are analysed in view of increasing the efficiency of the best performing TiO2 and ZnO-based nanostructures, toward their practical application in a solar water splitting device.

10.
ACS Appl Mater Interfaces ; 5(21): 11288-95, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24102107

RESUMO

In this paper, a methodology for the streamlining of the sensitization procedure of flowerlike ZnO nanostructures for dye-sensitized solar cells (DSCs) is reported. The sensitization of ZnO surface with ruthenium-based complexes is a particularly critical process, since one has to minimize the dissolution of surface Zn atoms by the protons released from the dye molecules, leading to the formation of Zn(2+)/dye complexes. The fine-tuning of the experimental parameters, such as the dye loading time, the dye concentration, and the pH of the sensitizing solution, performed through a multivariate optimization by means of a chemometric approach, is here reported. The dye loading procedure was optimized using ZnO microparticles with nanostructured protrusions, synthesized by a simple and low-cost hydrothermal process. Mild reaction conditions were used, and wurtzite-like crystalline structure with a relatively high surface area was obtained once the reaction process was completed. After dispersion of ZnO flowerlike particles in an acetic acid-based solution, a 14 µm-thick ZnO layer acting as DSC photoanode was fabricated. The optimized sensitization procedure allowed minimizing the instability of ZnO surface in contact with acidic dyes, avoiding the formation of molecular agglomerates unable to inject electrons in the ZnO conduction band, achieving good results in the photoconversion efficiency. Moreover, the photoharvesting properties were further enhanced by adding N-methylbenzimidazole into the iodine-based liquid electrolyte. Such an additive was proposed here for the first time in combination with a ZnO photoelectrode, helping to reduce an undesired recombination between the photoinjected electrons and the oxidized redox mediator.

11.
Phys Chem Chem Phys ; 15(19): 7198-203, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23552364

RESUMO

A simple hemi-squaraine dye (CT1) has been studied as a TiO2 sensitizer for application in dye sensitized solar cells (DSCs) by means of a combined experimental and theoretical investigation. This molecule is a prototype dye presenting an innovative anchoring group: the squaric acid moiety. Ab initio calculations based on Density Functional Theory (DFT) predict that this acid spontaneously deprotonates at the anatase (101) surface forming chemical bonds that are stronger than the ones formed by other linkers (e.g. cathecol and isonicotinic acid). Moreover an analysis of the electronic structure of the hybrid interface reveals the formation of a type II heterostructure ensuring adiabatic electron transfer from the molecule to the oxide. DSCs containing hemi-squaraine dyes were assembled, characterized and their performances compared to state of the art cells. Experimental results (large incident photon-to-electron conversion efficiency and an efficiency of 3.54%) confirmed the theoretical prediction that even a simple hemi-squaraine is an effective sensitizer for TiO2. Our study paves the way to the design of more efficient sensitizers based on a squaric acid linker and specifically engineered to absorb light in a larger part of the visible range.

12.
Phys Chem Chem Phys ; 15(35): 14634-46, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23380986

RESUMO

A numerical device-level model of dye-sensitized solar cells (DSCs) is presented, which self-consistently couples a physics-based description of the photoactive layer with a compact circuit-level description of the passive parts of the cell. The opto-electronic model of the nanoporous dyed film includes a detailed description of photogeneration and trap-limited kinetics, and a phenomenological description of nonlinear recombination. Numerical simulations of the dynamic small-signal behavior of DSCs, accounting for trapping and nonlinear recombination mechanisms, are reported for the first time and validated against experiments. The model is applied to build a consistent picture of the static and dynamic small-signal performance of nanocrystalline TiO2-based DSCs under different incident illumination intensity and direction, analyzed in terms of current-voltage characteristic, Incident Photon to Current Efficiency, and Electrochemical Impedance Spectroscopy. This is achieved with a reliable extraction and validation of a unique set of model parameters against a large enough set of experimental data. Such a complete and validated description allows us to gain a detailed view of the cell collection efficiency dependence on different operating conditions. In particular, based on dynamic numerical simulations, we provide for the first time a sound support to the interpretation of the diffusion length, in the presence of nonlinear recombination and non-uniform electron density distribution, as derived from small-signal characterization techniques and clarify its correlation with different estimation methods based on spectral measurements.

13.
Phys Chem Chem Phys ; 14(47): 16203-8, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23001064

RESUMO

Sponge-like nanostructured ZnO layers were successfully employed as photoanodes for the fabrication of highly efficient dye-sensitized solar cells. The sponge-like ZnO layers were obtained by room temperature radio-frequency magnetron sputtering deposition of metallic zinc, followed by thermal oxidation treatment in an ambient atmosphere. The porous films show a 3D branched nanomorphology, with a feature similar to natural coral. The morphological and optical properties of these layers were studied through field emission scanning electron microscopy, specific surface area measurements, ultraviolet-visible transmittance and absorption spectroscopy. The sponge-like ZnO film presents a high density of branches, with a relatively high specific surface area value, and fine optical transmittance. The morphology of the porous structure provides a high number of adsorption sites for the anchoring of sensitizer molecules, making it suitable for the fabrication of ZnO-based photoanodes for dye-sensitized solar cells. The light harvesting performance of the sensitized semiconductor was evaluated by current density vs. voltage measurements, incident photon-to-electron conversion efficiency, open circuit voltage decay and impedance spectroscopy. The modelling of the electrical characteristics evidences a higher electron lifetime and a longer charge diffusion length, if compared to standard TiO(2) nanoparticle based photoanodes. For ZnO films with a thickness up to 18 µm, a photoconversion efficiency as high as 6.67% and a maximum value of the incident photon-to-electron collection efficiency equal to 87% at 530 nm were demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...