Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(30): 6814-6822, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37486855

RESUMO

Photochemically induced dynamic nuclear polarization (photo-CIDNP) enables nuclear spin ordering by irradiating samples with light. Polarized spins are conventionally detected via high-field chemical-shift-resolved NMR (above 0.1 T). In this Letter, we demonstrate in situ low-field photo-CIDNP measurements using a magnetically shielded fast-field-cycling NMR setup detecting Larmor precession via atomic magnetometers. For solutions comprising mM concentrations of the photochemically polarized molecules, hyperpolarized 1H magnetization is detected by pulse-acquired NMR spectroscopy. The observed NMR line widths are about 5 times narrower than normally anticipated in high-field NMR and are systematically affected by light irradiation during the acquisition period, reflecting a reduction of the transverse relaxation time constant, T2*, on the order of 10%. Magnetometer-detected photo-CIDNP spectroscopy enables straightforward observation of spin-chemistry processes in the ambient field range from a few nT to tens of mT. Potential applications of this measuring modality are discussed.

2.
Phys Rev Lett ; 129(3): 031301, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905361

RESUMO

We present a search for fundamental constant oscillations in the range 20 kHz-100 MHz that may arise within models for ultralight dark matter (UDM). Using two independent optical-spectroscopy apparatuses, we achieve up to ×1000 greater sensitivity in the search relative to previous work [D. Antypas et al., Phys. Rev. Lett. 123, 141102 (2019).PRLTAO0031-900710.1103/PhysRevLett.123.141102]. We report no observation of UDM and thus constrain respective couplings to electrons and photons within the investigated UDM particle mass range 8×10^{-11}-4×10^{-7} eV. The constraints significantly exceed previously set bounds from atomic spectroscopy and, as we show, may surpass in future experiments those provided by equivalence-principle (EP) experiments in a specific case regarding the combination of UDM couplings probed by the EP experiments.

3.
J Chem Phys ; 152(16): 164202, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32357774

RESUMO

We present a new cavity-based polarimetric scheme for highly sensitive and time-resolved measurements of birefringence and dichroism, linear and circular, that employs rapidly pulsed single-frequency continuous wave (CW) laser sources and extends current cavity-based spectropolarimetric techniques. We demonstrate how the use of a CW laser source allows for gains in spectral resolution, signal intensity, and data acquisition rate compared to traditional pulsed-based cavity ring-down polarimetry (CRDP). We discuss a particular CW-CRDP modality that is different from intensity-based cavity-enhanced polarimetric schemes as it relies on the determination of the polarization rotation frequency during a ring-down event generated by large intracavity polarization anisotropies. We present the principles of CW-CRDP and validate the applicability of this technique for the measurement of the non-resonant Faraday effect in solid SiO2 and CeF3 and gaseous butane. We give a general analysis of the fundamental sensitivity limits for CRDP techniques and show how the presented frequency-based methodology alleviates the requirement for high finesse cavities to achieve high polarimetric sensitivities and, thus, allows for the extension of cavity-based polarimetric schemes into different spectral regimes, but most importantly renders the CW-CRDP methodology particularly suitable for robust portable polarimetric instrumentations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...