Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(8): 849-853, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37157021

RESUMO

Topologically protected magnetic textures are promising candidates for information carriers in future memory devices, as they can be efficiently propelled at very high velocities using current-induced spin torques. These textures-nanoscale whirls in the magnetic order-include skyrmions, half-skyrmions (merons) and their antiparticles. Antiferromagnets have been shown to host versions of these textures that have high potential for terahertz dynamics, deflection-free motion and improved size scaling due to the absence of stray field. Here we show that topological spin textures, merons and antimerons, can be generated at room temperature and reversibly moved using electrical pulses in thin-film CuMnAs, a semimetallic antiferromagnet that is a testbed system for spintronic applications. The merons and antimerons are localized on 180° domain walls, and move in the direction of the current pulses. The electrical generation and manipulation of antiferromagnetic merons is a crucial step towards realizing the full potential of antiferromagnetic thin films as active components in high-density, high-speed magnetic memory devices.

2.
Phys Rev Lett ; 121(9): 097204, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230873

RESUMO

We demonstrate that the nontrivial magnetic texture of antiferromagnetic Skyrmions (AFM Sks) promotes a nonvanishing topological spin Hall effect (TSHE) on the flowing electrons. This effect results in a substantial enhancement of the nonadiabatic torque and, hence, improves the Skyrmion mobility. This nonadiabatic torque increases when decreasing the Skyrmion size, and, therefore, scaling down results in a much higher torque efficiency. In clean AFM Sks, we find a significant boost of the TSHE close to the van Hove singularity. Interestingly, this effect is enhanced away from the band gap in the presence of nonmagnetic interstitial defects. Furthermore, unlike their ferromagnetic counterpart, the TSHE in AFM Sks increases with an increase in the disorder strength, thus opening promising avenues for materials engineering of this effect.

3.
Phys Rev Lett ; 110(12): 127208, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166843

RESUMO

Antiferromagnets can be used to store and manipulate spin information, but the coupled dynamics of the staggered field and the magnetization are very complex. We present a theory which is conceptually much simpler and which uses collective coordinates to describe staggered field dynamics in antiferromagnetic textures. The theory includes effects from dissipation, external magnetic fields, as well as reactive and dissipative current-induced torques. We conclude that, at low frequencies and amplitudes, currents induce collective motion by means of dissipative rather than reactive torques. The dynamics of a one-dimensional domain wall, pinned at 90° at its ends, are described as a driven harmonic oscillator with a natural frequency inversely proportional to the length of the texture.

4.
Phys Rev Lett ; 108(24): 247201, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004313

RESUMO

We generalize domain-wall dynamics to the case of translationally noninvariant ferromagnetic nanowires. The obtained equations of motion make the description of the domain-wall propagation more realistic by accounting for the variations along the wire, such as disorder or change in the wire shape. We show that the effective equations of motion are very general and do not depend on the model details. As an example of their use, we consider an hourglass-shaped nanostrip in detail. A transverse domain wall is trapped in the middle and has two stable magnetization directions. We study the switching between the two directions by short current pulses. We obtain the exact time dependence of the current pulses required to switch the magnetization with the minimal Ohmic losses per switching. Furthermore, we find how the Ohmic losses per switching depend on the switching time for the optimal current pulse. As a result, we show that as a magnetic memory device this nanodevice may be 10(5) times more energy efficient than the best modern devices.

5.
Phys Rev Lett ; 105(15): 157201, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21230934

RESUMO

We study current-induced magnetization dynamics in a long thin ferromagnetic wire with a Dzyaloshinskii-Moriya interaction (DMI). We find a spiral domain wall configuration of the magnetization and obtain an analytical expression for the width of the domain wall as a function of the interaction strengths. Our findings show that above a certain value of DMI a domain wall configuration cannot exist in the wire. Below this value we determine the domain wall dynamics for small currents, and calculate the drift velocity of the domain wall along the wire. We show that the DMI suppresses the minimum value of current required to move the domain wall. Depending on its sign, the DMI increases or decreases the domain wall drift velocity.

6.
Phys Rev Lett ; 105(21): 217203, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231347

RESUMO

We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For any domain-wall velocity we find the time dependence of the current needed to minimize the Ohmic losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses reduction from its dc value is the most dramatic.

7.
Phys Rev Lett ; 100(12): 127204, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18517907

RESUMO

We express the dynamics of domain walls in ferromagnetic nanowires in terms of collective coordinates, generalizing Thiele's steady-state results. For weak external perturbations the dynamics is dominated by a few soft modes. The general approach is illustrated on the example of a vortex wall relevant to recent experiments with flat nanowires. A two-mode approximation gives a quantitatively accurate description of both the steady viscous motion of the wall in weak magnetic fields and its oscillatory behavior in moderately high fields above the Walker breakdown.

8.
Phys Rev Lett ; 98(11): 117204, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17501087

RESUMO

We report unexpected phenomena during magnetization reversal in ultrathin Co films and Co/Pt multilayers with perpendicular anisotropy. Using magneto-optical Kerr microscopy and magnetic force microscopy we have observed asymmetrical nucleation centers where the reversal begins for one direction of the field only and is characterized by an acute asymmetry of domain-wall mobility. We have also observed magnetic domains with a continuously varying average magnetization, which can be explained in terms of the coexistence of three magnetic phases: up, down, and striped.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...