Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Benef Microbes ; 14(1): 57-72, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36815495

RESUMO

Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of Pediococcus pentosaceus strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as P. pentosaceus, named ST58. Based on multiple isolation of the same strain (P. pentosaceus ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of P. pentosaceus ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against L. monocytogenes strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, P. pentosaceus ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.


Assuntos
Bacteriocinas , Listeria monocytogenes , Probióticos , Humanos , Pediococcus pentosaceus/genética , Pediococcus pentosaceus/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , RNA Ribossômico 16S/genética , Pediococcus/genética , Pediococcus/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacologia , Antibacterianos/farmacologia , Genômica
2.
Microbiol Res ; 265: 127197, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36174355

RESUMO

Antarctica is the coldest and driest continent on Earth, characterized by polyextreme environmental conditions, where species adapted form complex networks of interactions. Microbial communities growing in these harsh environments can form biofilms that help the associated species to survive and thrive. A rich body of knowledge describes environmental biofilm communities; however, most studies have focused on dominant community members rather than functional complexity and metabolic potential. To overcome these limitations, the present study used genome-centric metagenomics to describe two biofilm samples subjected to different temperature collected in Deception Island, Maritime Antarctica. The results unraveled a complex biofilm microbiome represented by 180 metagenome-assembled genomes. The potential metabolic interactions were investigated using metabolic flux balance analysis and revealed that purple bacteria are the community members with the highest correlations with other bacteria. Due to their predicted mixotrophic behavior, they may play a crucial role in the microbiome, likely supporting the heterotrophic species in biofilms. Metatranscriptomics results revealed that the chaperone system and proteins counteracting ROS and toxic compounds have a major role in maintaining bacterial cell homeostasis in sediments of volcanic origin.


Assuntos
Metagenômica , Microbiota , Regiões Antárticas , Biofilmes , Metagenoma , Metagenômica/métodos , Microbiota/genética , Espécies Reativas de Oxigênio
3.
J Biotechnol ; 319: 1-7, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32470462

RESUMO

Gas fermentation for the production of building block molecules and biofuels is lately gaining attention as a means to eliminate the greenhouse gases emissions. Especially CO2 capture and recycling are in focus. Thus, the biological coupling of CO2 and H2 is of high interest. Therefore, the focus of the present work was to evaluate the performances of two up-flow reactors for CO2 and H2 assimilation. Process monitoring showed that the gas-liquid H2 transfer was highly affected by reactor design. A reactor filled with Raschig rings could lift up gases utilization leading to a CH4 content of 81% at 6 h gas retention time and 8.8 L/LR.h gas recirculation rate. In contrast, limited biomethanation was achieved in the absence of Raschig rings highlighting the positive role of packing material to the performance of up-flow-reactors. Additionally, high-throughput 16S rRNA sequencing revealed that the microbial community was ultimately resided by Methanothermobacter methanogens.


Assuntos
Reatores Biológicos/microbiologia , Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Hidrogênio/metabolismo , Anaerobiose , Biocombustíveis , Metano/metabolismo , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo
4.
Bioresour Technol ; 264: 140-147, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29800774

RESUMO

Microbial dynamics in an upgrading biogas reactor system undergoing a more than two years-period at stable operating conditions were explored. The carbon dioxide generated during biomass degradation in the first reactor of the system was converted to methane into the secondary reactor by addition of external hydrogen. Considering the overall efficiency, the long-term operation period resulted in an improved biogas upgrading performance (99% methane content). However, a remarkable accumulation of acetate was revealed, indicating the enhancement of homoacetogenic activity. For this reason, a shift in the anaerobic digestion microbiome was expected and evaluated by 16S rRNA amplicon analysis. Results demonstrated that the most abundant archaeal species identified in the first time point, Candidatus Methanoculleus thermohydrogenotrophicum, was replaced by Methanothermobacter thermautotrophicus, becoming dominant after the community adaptation. The most interesting taxonomic units were clustered by relative abundance and six main long-term adaptation trends were found, characterizing functionally related microbes (e.g. homoacetogens).


Assuntos
Biocombustíveis , Hidrogênio , Anaerobiose , Reatores Biológicos , Metano , RNA Ribossômico 16S
5.
Genome Announc ; 6(4)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371355

RESUMO

The genome sequence of Rhizobium sullae strain HCNT1, isolated from root nodules of the legume Hedysarum coronarium growing in wild stands in Tuscany, Italy, is described here. Unlike other R. sullae strains, this isolate features a truncated denitrification pathway lacking NO/N2O reductase activity and displaying high sensitivity to nitrite under anaerobic conditions.

6.
Bioresour Technol ; 234: 350-359, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28340440

RESUMO

Bioaugmentation with hydrolytic microbes was applied to improve the methane yield of bioreactors fed with agricultural wastes. The efficiency of Clostridium thermocellum and Melioribacter roseus to degrade lignocellulosic matter was evaluated in batch and continuously stirred tank reactors (CSTRs). Results from batch assays showed that C. thermocellum enhanced the methane yield by 34%. A similar increase was recorded in CSTR during the bioaugmentation period; however, at steady-state the effect was noticeably lower (7.5%). In contrast, the bioaugmentation with M. roseus did not promote markedly the anaerobic biodegradability, as the methane yield was increased up to 10% in batch and no effect was shown in CSTR. High-throughput 16S rRNA amplicon sequencing was used to assess the effect of bioaugmentation strategies on bacterial and archaeal populations. The microbial analysis revealed that both strains were not markedly resided into biogas microbiome. Additionally, the applied strategies did not alter significantly the microbial communities.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Lignina/metabolismo , Agricultura , Anaerobiose , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Biocombustíveis , Hidrólise , Metano/biossíntese , Microbiota , RNA Ribossômico 16S/genética
7.
Environ Microbiol ; 13(8): 2018-38, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21059163

RESUMO

Methanococcoides burtonii is a member of the Archaea that was isolated from Ace Lake in Antarctica and is a valuable model for studying cold adaptation. Low temperature transcriptional regulation of global gene expression, and the arrangement of transcriptional units in cold-adapted archaea has not been studied. We developed a microarray for determining which genes are expressed in operons, and which are differentially expressed at low (4°C) or high (23°C) temperature. Approximately 55% of genes were found to be arranged in operons that range in length from 2 to 23 genes, and mRNA abundance tended to increase with operon length. Analysing microarray data previously obtained by others for Halobacterium salinarum revealed a similar correlation between operon length and mRNA abundance, suggesting that operons may play a similar role more broadly in the Archaea. More than 500 genes were differentially expressed at levels up to ≈ 24-fold. A notable feature was the upregulation of genes involved in maintaining RNA in a state suitable for translation in the cold. Comparison between microarray experiments and results previously obtained using proteomics indicates that transcriptional regulation (rather than translation) is primarily responsible for controlling gene expression in M. burtonii. In addition, certain genes (e.g. involved in ribosome structure and methanogenesis) appear to be regulated post-transcriptionally. This is one of few experimental studies describing the genome-wide distribution and regulation of operons in archaea.


Assuntos
Regulação da Expressão Gênica em Archaea , Methanosarcinaceae/genética , Methanosarcinaceae/metabolismo , Temperatura , Adaptação Fisiológica/genética , Regiões Antárticas , Proteínas Arqueais/genética , Perfilação da Expressão Gênica , Óperon , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...