Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38222464

RESUMO

Optical tracking is a real-time transducer positioning method for transcranial focused ultrasound (tFUS) procedures, but the predicted focus from optical tracking typically does not incorporate subject-specific skull information. Acoustic simulations can estimate the pressure field when propagating through the cranium but rely on accurately replicating the positioning of the transducer and skull in a simulated space. Here, we develop and characterize the accuracy of a workflow that creates simulation grids based on optical tracking information in a neuronavigated phantom with and without transmission through an ex vivo skull cap. The software pipeline could replicate the geometry of the tFUS procedure within the limits of the optical tracking system (transcranial target registration error (TRE): 3.9 ± 0.7 mm). The simulated focus and the free-field focus predicted by optical tracking had low Euclidean distance errors of 0.5±0.1 and 1.2±0.4 mm for phantom and skull cap, respectively, and some skull-specific effects were captured by the simulation. However, the TRE of simulation informed by optical tracking was 4.6±0.2, which is as large or greater than the focal spot size used by many tFUS systems. By updating the position of the transducer using the original TRE offset, we reduced the simulated TRE to 1.1 ± 0.4 mm. Our study describes a software pipeline for treatment planning, evaluates its accuracy, and demonstrates an approach using MR-acoustic radiation force imaging as a method to improve dosimetry. Overall, our software pipeline helps estimate acoustic exposure, and our study highlights the need for image feedback to increase the accuracy of tFUS dosimetry.

2.
PLoS Biol ; 20(9): e3001785, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067198

RESUMO

Anterior cingulate cortex (ACC) and striatum (STR) contain neurons encoding not only the expected values of actions, but also the value of stimulus features irrespective of actions. Values about stimulus features in ACC or STR might contribute to adaptive behavior by guiding fixational information sampling and biasing choices toward relevant objects, but they might also have indirect motivational functions by enabling subjects to estimate the value of putting effort into choosing objects. Here, we tested these possibilities by modulating neuronal activity in ACC and STR of nonhuman primates using transcranial ultrasound stimulation while subjects learned the relevance of objects in situations with varying motivational and cognitive demands. Motivational demand was indexed by varying gains and losses during learning, while cognitive demand was varied by increasing the uncertainty about which object features could be relevant during learning. We found that ultrasound stimulation of the ACC, but not the STR, reduced learning efficiency and prolonged information sampling when the task required averting losses and motivational demands were high. Reduced learning efficiency was particularly evident at higher cognitive demands and when subjects experienced loss of already attained tokens. These results suggest that the ACC supports flexible learning of feature values when loss experiences impose a motivational challenge and when uncertainty about the relevance of objects is high. Taken together, these findings provide causal evidence that the ACC facilitates resource allocation and improves visual information sampling during adaptive behavior.


Assuntos
Giro do Cíngulo , Aprendizagem , Animais , Corpo Estriado , Giro do Cíngulo/fisiologia , Humanos , Aprendizagem/fisiologia , Motivação , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...