Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 94(4-1): 043115, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841615

RESUMO

Various spatial density profiles can develop in partially miscible stratifications when a phase A dissolves with a finite solubility into a host phase containing a dissolved reactant B. We investigate theoretically the impact of an A+B→C reaction on such density profiles in the host phase and classify them in a parameter space spanned by the ratios of relative contributions to density and diffusion coefficients of the chemical species. While the density profile is either monotonically increasing or decreasing in the nonreactive case, reactions combined with differential diffusivity can create eight different types of density profiles featuring up to two extrema in density, at the reaction front or below it. We use this framework to predict various possible hydrodynamic instability scenarios inducing buoyancy-driven convection around such reaction fronts when they propagate parallel to the gravity field.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25768591

RESUMO

Upon contact between miscible solutions of reactants A and B along a horizontal interface in the gravity field, various buoyancy-driven instabilities can develop when an A+B→C reaction takes place and the density varies with the concentrations of the various chemicals. To classify the possible convective instability scenarios, we analyze the spatial dependence of the large time asymptotic density profiles as a function of the key parameters of the problem, which are the ratios of diffusion coefficients and of solutal expansion coefficients of species A, B, and C. We find that 62 different density profiles can develop in the reactive problem, whereas only 6 of them can be obtained in the nonreactive one.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24125346

RESUMO

A buoyancy-driven hydrodynamic instability appearing when an aqueous acid solution of HCl overlies a denser alkaline aqueous solution of NaOH in a vertically oriented Hele-Shaw cell is studied both experimentally and theoretically. The peculiarity of this reactive convection pattern is its asymmetry with regard to the initial contact line between the two solutions as convective plumes develop in the acidic solution only. We investigate here by a linear stability analysis (LSA) of a reaction-diffusion-convection model of a simple A+B→C reaction the relative role of solutal versus thermal effects in the origin and location of this instability. We show that heat effects are much weaker than concentration-related ones such that the heat of reaction only plays a minor role on the dynamics. Computation of density profiles and of the stability analysis eigenfunctions confirm that the convective motions result from a diffusive layer convection mechanism whereby a locally unstable density stratification develops in the upper acidic layer because of the difference in the diffusion coefficients of the chemical species. The growth rate and wavelength of the pattern are determined experimentally as a function of the Brinkman parameter of the problem and compare favorably with the theoretical predictions of both LSA and nonlinear simulations.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 2): 015304, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22400618

RESUMO

An experimental demonstration of reaction-driven viscous fingering developing when a more viscous solution of a reactant A displaces a less viscous miscible solution of another reactant B is presented. In the absence of reaction, such a displacement of one fluid by another less mobile one is classically stable. However, a simple A+B→C reaction can destabilize this interface if the product C is either more or less viscous than both reactant solutions. Using the pH dependence of the viscosity of some polymer solutions, we provide experimental evidence of both scenarios. We demonstrate quantitatively that reactive viscous fingering results from the buildup in time of nonmonotonic viscosity profiles with patterns behind or ahead of the reaction zone, depending on whether the product is more or less viscous than the reactants. The experimental findings are backed up by numerical simulations.

5.
Phys Chem Chem Phys ; 13(38): 17295-303, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21881652

RESUMO

Buoyancy-driven hydrodynamic instabilities of acid-base fronts are studied both experimentally and theoretically in the case where an aqueous solution of a strong acid is put above a denser aqueous solution of a color indicator in the gravity field. The neutralization reaction between the acid and the color indicator as well as their differential diffusion modifies the initially stable density profile in the system and can trigger convective motions both above and below the initial contact line. The type of patterns observed as well as their wavelength and the speed of the reaction front are shown to depend on the value of the initial concentrations of the acid and of the color indicator and on their ratio. A reaction-diffusion model based on charge balances and ion pair mobility explains how the instability scenarios change when the concentration of the reactants are varied.

6.
J Phys Chem B ; 115(32): 9739-44, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21793552

RESUMO

When two miscible solutions, each containing a reactive species, are put in contact in the gravity field, local variations in the density due to the reaction can induce convective motion and mixing. We characterize here both experimentally and theoretically such buoyancy-driven instabilities induced by the neutralization of a strong acid by a strong base in aqueous solutions. The diverse patterns obtained are shown to depend on the type of reactants used and on their relative concentrations. They have their origin in a combination of classical hydrodynamic instabilities including differential diffusion of the solutes involved while temperature effects only play a marginal role.

7.
Phys Rev Lett ; 104(4): 044501, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20366715

RESUMO

In the gravity field, density changes triggered by a kinetic scheme as simple as A+B-->C can induce or affect buoyancy-driven instabilities at a horizontal interface between two solutions containing initially the scalars A and B. On the basis of a general reaction-diffusion-convection model, we analyze to what extent the reaction can destabilize otherwise buoyantly stable density stratifications. We furthermore show that, even if the underlying nonreactive system is buoyantly unstable, the reaction breaks the symmetry of the developing patterns. This is demonstrated both numerically and experimentally on the specific example of a simple acid-base neutralization reaction.

8.
Phys Rev Lett ; 105(20): 204501, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231238

RESUMO

Miscible viscous fingering classically occurs when a less viscous fluid displaces a miscible more viscous one in a porous medium. We analyze here how double diffusive effects between a slow diffusing S and a fast diffusing F component, both influencing the viscosity of the fluids at hand, affect such fingering, and, most importantly, can destabilize the classically stable situation of a more viscous fluid displacing a less viscous one. Various instability scenarios are classified in a parameter space spanned by the log-mobility ratios R(s) and R(f) of the slow and fast component, respectively, and parametrized by the ratio of diffusion coefficients δ. Numerical simulations of the full nonlinear problem confirm the existence of the predicted instability scenarios and highlight the influence of differential diffusion effects on the nonlinear fingering dynamics.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(4 Pt 2): 046118, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19905401

RESUMO

The small-time asymptotic properties of the reaction front formed by a reaction A+B-->C coupled to diffusion are considered. Reactants A and B are initially separately dissolved in two identical solvents. The solvents are brought into contact and the reactants meet through diffusion. The small-time asymptotic position of the center of mass of the reaction rate is obtained analytically. When one of the reactants diffuses much faster than the other reactant then the position of the local maximum in the reaction rate travels on a length scale related to the diffusion coefficient of the slowest diffusing reactant while the first moment of the reaction rate and the width of the reaction front are on a length scale related to the diffusion coefficient of the fastest diffusing reactant. If the sum of the initial reactant concentrations is fixed, then the fastest reaction rate is obtained when equal concentrations are used. The first-order solutions are analytically obtained, however, each solution involves an integral which requires numerical evaluation. Various small-time asymptotic analytical reaction front properties are obtained. In particular, one finds that the position of the center of mass of the product concentration distribution is initially located at three quarters of the position of the center of mass of the reaction rate.


Assuntos
Biopolímeros/química , Misturas Complexas/química , Modelos Químicos , Simulação por Computador , Difusão
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 2): 016105, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19257105

RESUMO

This study examines the large time asymptotic behavior for the family of reactions of the form nA+mB-->C when the reactants A and B are initially separated. Once the reactants are brought into contact they are assumed to react with a kinetic rate proportional to A;{n}B;{m} . A planar reaction front forms and usually moves away from its initial position to invade one of the reactant solutions. The position of the reaction front relative to the initial position where the reactants were put in contact x_{f} for large times t , is found theoretically to satisfy the expansion x_{f}=2sqrt[t][alpha+alpha_{2}t;{-2sigma}+alpha_{3}t;{-3sigma}+O(t;{-4sigma})] , where sigma=1(n+m+1) and alpha , alpha_{2} , and alpha_{3} are constants. This expansion is valid provided that n and m are positive constants less than or equal to 3. The implication of this is that when n+m not equal3 , x_{f} either tends to zero or infinity, while if n+m=3 then there exists the possibility of x_{f} tending to a finite nonzero constant. For fractional order kinetics, n and m are arbitrary positive constants, however, for simple reactions n and m are positive integers. Hence, the reaction A+2B-->C is the only reaction of the form nA+mB-->C with n and m being positive integers less than 4 in an infinite domain that can lead to a reaction front approaching at a finite but nonzero distance from the position at which the two liquids first met.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(2 Pt 2): 026122, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18850912

RESUMO

Large time evolution of concentration profiles is studied analytically for reaction-diffusion systems where the reactants A and B are each initially separately contained in two immiscible solutions and react upon contact and transfer across the interface according to a general nA+mB-->C reaction scheme. This study generalizes to immiscible two-layer systems the large time analytical asymptotic limits of concentrations derived by Koza [J. Stat. Phys. 85, 179 (1996)] for miscible fluids and for reaction rates of the form A;{n}B;{m} with arbitrary diffusion coefficients and homogeneous initial concentrations. In addition to a dependence on the parameters already characterizing the miscible case, the asymptotic concentration profiles in immiscible systems depend now also on the partition coefficients of the chemical species between the two solution layers and on the ratio of diffusion coefficients of a given species in the two fluids. The miscible time scalings are found to remain valid for the immiscible fluids case. However, for immiscible systems, the reaction front speed is enhanced by increasing the stoichiometry of the invading species over that of the species being invaded. The direction of the front propagation is found to depend on the diffusion coefficient of the invading species in its initial fluid but not on its value in the invading fluid. Hence, a reaction front in immiscible fluids can travel in the opposite direction to the reaction front formed in miscible fluids for a range of parameter values. The value of the invading species partition coefficient affects the magnitude of the front speed but it cannot alter the direction of the front. For sufficiently large times, the total amount of product produced in time is independent of the rate of the reaction. The centre of mass of the product can move in the opposite direction to the center of mass of the reaction rate.

12.
Phys Rev Lett ; 101(8): 084503, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18764622

RESUMO

The dynamics of A+B-->C fronts in horizontal solution layers can be influenced by buoyancy-driven convection as soon as the densities of A, B, and C are not all identical. Such convective motions can lead to front propagation even in the case of equal diffusion coefficients and initial concentration of reactants for which reaction-diffusion (RD) scalings predict a nonmoving front. We show theoretically that the dynamics in the presence of convection can in that case be predicted solely on the basis of the knowledge of the one-dimensional RD density profile across the front.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA