Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 55(9): 1473-80, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25071098

RESUMO

UNLABELLED: The purpose of this study was to describe (18)F-FDG uptake across a spectrum of pediatric brain tumors and correlate (18)F-FDG PET with MR imaging variables, progression-free survival (PFS), and overall survival (OS). METHODS: A retrospective analysis was conducted of children enrolled in phase I/II clinical trials through the Pediatric Brain Tumor Consortium from August 2000 to June 2010. PET variables were summarized within diagnostic categories using descriptive statistics. Associations of PET with MR imaging variables and PFS and OS by tumor types were evaluated. RESULTS: Baseline (18)F-FDG PET was available in 203 children; 66 had newly diagnosed brain tumors, and 137 had recurrent/refractory brain tumors before enrolling in a Pediatric Brain Tumor Consortium trial. MR imaging was performed within 2 wk of PET and before therapy in all cases. The (18)F-FDG uptake pattern and MR imaging contrast enhancement (CE) varied by tumor type. On average, glioblastoma multiforme and medulloblastoma had uniform, intense uptake throughout the tumor, whereas brain stem gliomas (BSGs) had low uptake in less than 50% of the tumor and ependymoma had low uptake throughout the tumor. For newly diagnosed BSG, correlation of (18)F-FDG uptake with CE portended reduced OS (P = 0.032); in refractory/recurrent BSG, lack of correlation between (18)F-FDG uptake and CE suggested decreased PFS (P = 0.023). In newly diagnosed BSG for which more than 50% of the tumor had (18)F-FDG uptake, there was a suggestion of lower apparent diffusion coefficient (P = 0.061) and decreased PFS (P = 0.065). CONCLUSION: (18)F-FDG PET and MR imaging showed a spectrum of patterns depending on tumor type. In newly diagnosed BSG, the correlation of (18)F-FDG uptake and CE suggested decreased OS, likely related to more aggressive disease. When more than 50% of the tumor had (18)F-FDG uptake, the apparent diffusion coefficient was lower, consistent with increased cellularity. In refractory/recurrent BSG, poor correlation between (18)F-FDG uptake and CE was associated with decreased PFS, which may reflect concurrent tissue breakdown at sites of treated disease and development of new sites of (18)F-FDG-avid malignancy.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Adolescente , Adulto , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Feminino , Glioma/diagnóstico por imagem , Glioma/mortalidade , Glioma/patologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Estudos Retrospectivos
2.
J Urol ; 188(5): 1978-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22999537

RESUMO

PURPOSE: Dynamic near infrared fluorescence imaging of the urinary tract provides a promising way to diagnose ureteropelvic junction obstruction. Initial studies demonstrated the ability to visualize urine flow and peristalsis in great detail. We analyzed the efficacy of near infrared imaging in evaluating ureteropelvic junction obstruction, renal involvement and the anatomical detail provided compared to conventional imaging modalities. MATERIALS AND METHODS: Ten swine underwent partial or complete unilateral ureteral obstruction. Groups were survived for the short or the long term. Imaging was performed with mercaptoacetyltriglycine diuretic renogram, magnetic resonance urogram, excretory urogram, ultrasound and near infrared imaging. Scoring systems for ureteropelvic junction obstruction were developed for magnetic resonance urogram and near infrared imaging. Physicians and medical students graded ureteropelvic junction obstruction based on magnetic resonance urogram and near infrared imaging results. RESULTS: Markers of vascular and urinary dynamics were quantitatively consistent among control renal units. The same markers were abnormal in obstructed renal units with significantly different times of renal phase peak, start of pelvic phase and start of renal uptake. Such parameters were consistent with those obtained with mercaptoacetyltriglycine diuretic renography. Near infrared imaging provided live imaging of urinary flow, which was helpful in identifying the area of obstruction for surgical planning. Physicians and medical students categorized the degree of obstruction appropriately for fluorescence imaging and magnetic resonance urogram. CONCLUSIONS: Near infrared imaging offers a feasible way to obtain live, dynamic images of urine flow and ureteral peristalsis. Qualitative and quantitative parameters were comparable to those of conventional imaging. Findings support fluorescence imaging as an accurate, easy to use method of diagnosing ureteropelvic junction obstruction.


Assuntos
Pelve Renal , Obstrução Ureteral/diagnóstico , Animais , Técnicas de Diagnóstico Urológico , Modelos Animais de Doenças , Feminino , Fluorescência , Raios Infravermelhos , Suínos
3.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 419-22, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-17271701

RESUMO

This paper presents an automated, patient-specific method for the detection of epileptic seizure onsets from noninvasive EEG. We adopt a patient-specific approach to exploit the consistency of an individual patient's seizure and non-seizure EEG. Our method uses a wavelet decomposition to construct a feature vector that captures the morphology and spatial distribution of an EEG epoch, and then determines whether that vector is representative of a patient's seizure or non-seizure EEG using the support-vector machine classification algorithm. Our completely automated method was tested on non-invasive EEG from thirty-six pediatric subjects suffering from a variety of seizure types. It detected 131 of 139 seizure events within 8.0+/-3.2 seconds following electrographic onset, and declared 15 false-detections in 60 hours of clinical EEG. Our patient-specific method can be used to initiate delay-sensitive clinical procedures following seizure onset; for example, the injection of an imaging radiopharmaceutical or stimulation of the vagus nerve.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...