Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 9(10): 1134-45, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27079742

RESUMO

Catalytic fast pyrolysis (CFP) of lignin with amorphous mesoporous aluminosilicates catalysts yields a high fraction of aromatics and a relatively low amount of char/coke. The relationship between the acidity and porosity of Al-MCM-41, Al-SBA-15, and Al-MSU-J with product selectivity during lignin CFP is determined. The acid sites (mild Brønsted and stronger Lewis) are able to catalyze pyrolysis intermediates towards fewer oxygenated phenols and aromatic hydrocarbons. A generalized correlation of the product selectivity and yield with the aluminum content and acidity of the mesoporous aluminosilicates is hard to establish. Zeolitic strong acid sites are not required to achieve high conversion and selectivity to aromatic hydrocarbon because nanosized MCM-41 produces a high liquid yield and selectivity. The two most essential parameters are diffusion, which is influenced by pore and grain size, and the active site, which may be mildly acidic, but is dominated by Lewis acid sites. Nanosized grains and mild acidity are essential ingredients for a good lignin CFP catalyst.


Assuntos
Silicatos de Alumínio/química , Lignina/química , Biomassa , Catálise , Concentração de Íons de Hidrogênio , Cinética , Porosidade , Dióxido de Silício/química
2.
ChemSusChem ; 6(1): 110-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180649

RESUMO

The natural resistance to enzymatic deconstruction exhibited by lignocellulosic materials has designated pretreatment as a key step in the biological conversion of biomass to ethanol. Hydrothermal pretreatment in pure water represents a challenging approach because it is a method with low operational costs and does not involve the use of organic solvents, difficult to handle chemicals, and "external" liquid or solid catalysts. In the present work, a systematic study has been performed to optimize the hydrothermal treatment of lignocellulosic biomass (beech wood) with the aim of maximizing the enzymatic digestibility of cellulose in the treated solids and obtaining a liquid side product that could also be utilized for the production of ethanol or valuable chemicals. Hydrothermal treatment experiments were conducted in a batch-mode, high-pressure reactor under autogeneous pressure at varying temperature (130-220 °C) and time (15-180 min) regimes, and at a liquid-to-solid ratio (LSR) of 15. The intensification of the process was expressed by the severity factor, log R(o). The major changes induced in the solid biomass were the dissolution/removal of hemicellulose to the process liquid and the partial removal and relocation of lignin on the external surface of biomass particles in the form of recondensed droplets. The above structural changes led to a 2.5-fold increase in surface area and total pore volume of the pretreated biomass solids. The enzymatic hydrolysis of cellulose to glucose increased from less than 7 wt% for the parent biomass to as high as 70 wt% for the treated solids. Maximum xylan recovery (60 wt%) in the hydrothermal process liquid was observed at about 80 wt% hemicellulose removal; this was accomplished by moderate treatment severities (log R(o)=3.8-4.1). At higher severities (log R(o)=4.7), xylose degradation products, mainly furfural and formic acid, were the predominant chemicals formed.


Assuntos
Lignina/química , Biocombustíveis , Biomassa , Celulase/química , Etanol , Fermentação , Temperatura Alta , Hidrólise , Microscopia Eletrônica de Varredura , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
J Colloid Interface Sci ; 342(2): 427-36, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19939399

RESUMO

Highly efficient sorbents for phosphate removal from aqueous solutions based on the calcined forms of Fe(III)-substituted Layered Double Hydroxides (LDH) materials have been developed in this study. Hydrotalcite-like materials with Mg/M(3+) approximately 3 (where M=Al(3+), Fe(3+) or combined) have been synthesized following simple co-precipitation method and were subsequently calcined in air at 450 degrees C. Both as-synthesized and calcined materials were characterized by means of X-ray Diffraction (XRD), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), elemental (C) analysis, N(2) porosimetry, Scanning Electron Microscopy (SEM). All the materials were evaluated for the sorption of phosphates by batch equilibrium sorption experiments and kinetic measurements (effect of contact time). It was shown that chlorides or nitrates, being the charge-balancing anions in the LDH structure, are more easily exchanged by phosphates compared to carbonates. In the Fe(III)-modified LDHs, an increase of the Fe loading led to the decrease of the sorption efficiency. The maximum uptake of phosphates for both the Mg-Al LDH and Mg-Fe LDH samples containing mainly carbonates as charge-balancing anions was relatively low (ca.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...