Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 3(1): 695, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219282

RESUMO

After bacterial cell division, the daughter cells are still covalently interlinked by the peptidoglycan network which is resolved by specific hydrolases (autolysins) to release the daughter cells. In staphylococci, the major autolysin (Atl) with its two domain enzymes, N-acetylmuramyl-L-alanine amidase (AmiA) and ß-N-acetylglucosaminidase (GlcA), resolves the peptidoglycan to release the daughter cells. Internal deletions in each of the enzyme domains revealed defined morphological alterations such as cell cluster formation in ΔamiA, ΔglcA and Δatl, and asymmetric cell division in the ΔglcA. A most important finding was that GlcA activity requires the prior removal of the stem peptide by AmiA for its activity thus the naked glycan strand is its substrate. Furthermore, GlcA is not an endo-ß-N-acetylglucosaminidase but an exo-enzyme that cuts the glycan backbone to disaccharides independent of its O-acetylation modification. Our results shed new light into the sequential peptidoglycan hydrolysis by AmiA and GlcA during cell division in staphylococci.


Assuntos
Amidoidrolases/metabolismo , Hexosaminidases/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Staphylococcus aureus/enzimologia , Amidoidrolases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Hexosaminidases/genética , Muramidase/genética , Muramidase/metabolismo , Mutação , N-Acetil-Muramil-L-Alanina Amidase/genética
2.
Commun Biol ; 3(1): 277, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483173

RESUMO

Certain skin bacteria are able to convert aromatic amino acids (AAA) into trace amines (TA) that act as neuromodulators. Since the human skin and sweat contain a comparatively high content of AAA one can expect that such bacteria are able to produce TA on our skin. Here we show that TA-producing Staphylococcus epidermidis strains expressing SadA are predominant on human skin and that TA accelerate wound healing. In wounded skin, keratinocytes produce epinephrine (EPI) that leads to cell motility inhibition by ß2-adrenergic receptor (ß2-AR) activation thus delay wound healing. As ß2-AR antagonists, TA and dopamine (DOP) abrogate the effect of EPI thus accelerating wound healing both in vitro and in a mouse model. In the mouse model, the S. epidermidis wild type strain accelerates wound healing compared to its ΔsadA mutant. Our study demonstrates that TA-producing S. epidermidis strains present on our skin might be beneficial for wound healing.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 2/metabolismo , Aminas/metabolismo , Movimento Celular , Dopamina/metabolismo , Epinefrina/metabolismo , Pele/lesões , Staphylococcus epidermidis/química , Cicatrização/fisiologia , Animais , Modelos Animais de Doenças , Epinefrina/biossíntese , Queratinócitos/metabolismo , Masculino , Camundongos
3.
Front Microbiol ; 10: 1157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191485

RESUMO

Rhodomyrtone (Rom) is an acylphloroglucinol antibiotic originally isolated from leaves of Rhodomyrtus tomentosa. Rom targets the bacterial membrane and is active against a wide range of Gram-positive bacteria but the exact mode of action remains obscure. Here we isolated and characterized a spontaneous Rom-resistant mutant from the model strain Staphylococcus aureus HG001 (RomR) to learn more about the resistance mechanism. We showed that Rom-resistance is based on a single point mutation in the coding region of farR [regulator of fatty acid (FA) resistance] that causes an amino acid change from Cys to Arg at position 116 in FarR, that affects FarR activity. Comparative transcriptome analysis revealed that mutated farR affects transcription of many genes in distinct pathways. FarR represses for example the expression of its own gene (farR), its flanking gene farE (effector of FA resistance), and other global regulators such as agr and sarA. All these genes were consequently upregulated in the RomR clone. Particularly the upregulation of agr and sarA leads to increased expression of virulence genes rendering the RomR clone more cytotoxic and more pathogenic in a mouse infection model. The Rom-resistance is largely due to the de-repression of farE. FarE is described as an efflux pump for linoleic and arachidonic acids. We observed an increased release of lipids in the RomR clone compared to its parental strain HG001. If farE is deleted in the RomR clone, or, if native farR is expressed in the RomR strain, the corresponding strains become hypersensitive to Rom. Overall, we show here that the high Rom-resistance is mediated by overexpression of farE in the RomR clone, that FarR is an important regulator, and that the point mutation in farR (RomR clone) makes the clone hyper-virulent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...