Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(18): 6874-6883, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725506

RESUMO

Synthetic strategies to isolate molecular complexes of lanthanides, other than cerium, in the +4 oxidation state remain elusive, with only four complexes of Tb(iv) isolated so far. Herein, we present a new approach for the stabilization of Tb(iv) using a siloxide tripodal trianionic ligand, which allows the control of unwanted ligand rearrangements, while tuning the Ln(iii)/Ln(iv) redox-couple. The Ln(iii) complexes, [LnIII((OSiPh2Ar)3-arene)(THF)3] (1-LnPh) and [K(toluene){LnIII((OSiPh2Ar)3-arene)(OSiPh3)}] (2-LnPh) (Ln = Ce, Tb, Pr), of the (HOSiPh2Ar)3-arene ligand were prepared. The redox properties of these complexes were compared to those of the Ln(iii) analogue complexes, [LnIII((OSi(OtBu)2Ar)3-arene)(THF)] (1-LnOtBu) and [K(THF)6][LnIII((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (2-LnOtBu) (Ln = Ce, Tb), of the less electron-donating siloxide trianionic ligand, (HOSi(OtBu)2Ar)3-arene. The cyclic voltammetry studies showed a cathodic shift in the oxidation potential for the cerium and terbium complexes of the more electron-donating phenyl substituted scaffold (1-LnPh) compared to those of the tert-butoxy (1-LnOtBu) ligand. Furthermore, the addition of the -OSiPh3 ligand further shifts the potential cathodically, making the Ln(iv) ion even more accessible. Notably, the Ce(iv) complexes, [CeIV((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (3-CeOtBu) and [CeIV((OSiPh2Ar)3-arene)(OSiPh3)(THF)2] (3-CePh), were prepared by chemical oxidation of the Ce(iii) analogues. Chemical oxidation of the Tb(iii) and Pr(iii) complexes (2-LnPh) was also possible, in which the Tb(iv) complex, [TbIV((OSiPh2Ar)3-arene)(OSiPh3)(MeCN)2] (3-TbPh), was isolated and crystallographically characterized, yielding the first example of a Tb(iv) supported by a polydentate ligand. The versatility and robustness of these siloxide arene-anchored platforms will allow further development in the isolation of more oxidizing Ln(iv) ions, widening the breadth of high-valent Ln chemistry.

2.
Chem Commun (Camb) ; 60(1): 55-58, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38015470

RESUMO

The silsesquioxane ligand (iBu)7Si7O9(OH)3 (iBuPOSSH3) is revealed as an attractive system for the assembly of robust polynuclear complexes of uranium(III) and allowed the isolation of the first example of a trinuclear U(III) complex ([U3(iBuPOSS)3]) that exhibits magnetic communication and promotes dinitrogen reduction in the presence of reducing agent.

3.
J Am Chem Soc ; 145(29): 16271-16283, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440295

RESUMO

The synthesis of molecular uranium complexes in oxidation states lower than +3 remains a challenge despite the interest for their multielectron transfer reactivity and electronic structures. Herein, we report the one- and two-electron reduction of a U(III) complex supported by an arene-tethered tris(siloxide) tripodal ligand leading to the mono-reduced complexes, [K(THF)U((OSi(OtBu)2Ar)3-arene)(THF)] (2) and [K(2.2.2-cryptand)][U((OSi(OtBu)2Ar)3-arene)(THF)] (2-crypt), and to the di-reduced U(I) synthons, [K2(THF)3U((OSi(OtBu)2Ar)3-arene)]∞ (3) and [(K(2.2.2-cryptand))]2[U((OSi(OtBu)2Ar)3-arene)] (3-crypt). EPR and UV/vis/NIR spectroscopies, magnetic, cyclic voltammetry, and computational studies provide strong evidence that complex 2-crypt is best described as a U(II), where the U(II) is stabilized by δ-bonding interactions between the arene anchor and the uranium frontier orbitals, whereas complexes 3 and 3-crypt are best described as having a U(III) ion supported by the di-reduced arene anchor. Three quasi-reversible redox waves at E1/2 = -3.27, -2.45, and -1.71 V were identified by cyclic voltammetry studies and were assigned to the U(IV)/U(III), U(III)/U(II), and U(II)/U(III)-(arene)2- redox couples. The ability of complexes 2 and 3 in transferring two- and three-electrons, respectively, to oxidizing substrates was confirmed by the reaction of 2 with azobenzene (PhNNPh), leading to the U(IV) complex, [K(Et2O)U((OSi(OtBu)2Ar)3-arene)(PhNNPh)(THF)] (4), and of complex 3 with cycloheptatriene, yielding the U(IV) complex, [(K(Et2O)2)U((OSi(OtBu)2Ar)3-arene)(η7-C7H7)]∞ (6). These results demonstrate that the arene-tethered tris(siloxide) tripodal ligand provides an excellent platform for accessing low-valent uranium chemistry while implementing multielectron transfer pathways as shown by the reactivity of complex 3, which provides the third example of a U(I) synthon.

4.
Angew Chem Int Ed Engl ; 62(18): e202218107, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36651327

RESUMO

Solvation of [(CNT)Ln(η8 -COT)] (Ln=La, Ce, Nd, Tb, Er; CNT=cyclononatetraenyl, i.e., C9 H9 - ; COT=cyclooctatetraendiid, i.e., C8 H8 2- ) complexes with tetrahydrofuran (THF) gives rise to neutral [(η4 -CNT)Ln(thf)2 (η8 -COT)] (Ln=La, Ce) and ionic [Ln(thf)x (η8 -COT)][CNT] (x=4 (Ce, Nd, Tb), 3 (Er)) species in a solid-to-solid transformation. Due to the severe distortion of the ligand sphere upon solvation, these species act as switchable luminophores and single-molecule magnets. The desolvation of the coordinated solvents can be triggered by applying a dynamic vacuum, as well as a temperature gradient stimulus. Raman spectroscopic investigations revealed fast and fully reversible solvation and desolvation processes. Moreover, we also show that a Nd:YAG laser can induce the necessary temperature gradient for a self-sufficient switching process of the Ce(III) analogue in a spatially resolved manner.

5.
JACS Au ; 2(8): 1881-1888, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36032537

RESUMO

Simple N-heteroaromatic Ni(II) precatalysts, (L)NiMe2 (L = bipy, bipym), were used for alkene isomerization. With an original reduction method using a simple borane (HB(Cat)), a low-valent Ni center was formed readily and showed good conversion when a reducing divalent lanthanide fragment, Cp*2Yb, was coordinated to the (bipym)NiMe2 complex, a performance not achieved by the monometallic (bipy)NiMe2 analogue. Experimental mechanistic investigations and computational studies revealed that the redox non-innocence of the L ligand triggered an electron shuttle process, allowing the elusive formation of Ni(I) species that were central to the isomerization process. Additionally, the reaction occurred with a preference for mono-isomerization rather than chain-walking isomerization. The presence of the low-valent ytterbium fragment, which contributed to the formation of the electron shuttle, strongly stabilized the catalysts, allowing catalytic loading as low as 0.5%. A series of alkenes with various architectures have been tested. The possibility to easily tune the various components of the heterobimetallic catalyst reported here, the ligand L and the divalent lanthanide fragment, opens perspectives for further applications in catalysis induced by Ni(I) species.

6.
JACS Au ; 2(12): 2839, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36590264

RESUMO

[This corrects the article DOI: 10.1021/jacsau.2c00251.].

7.
Chemistry ; 27(54): 13558-13567, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34196435

RESUMO

Sandwich complexes of lanthanides have recently attracted a considerable amount of interest due to their applications as Single Molecule Magnet (SMM). Herein, a comprehensive series of heteroleptic lanthanide sandwich complexes ligated by the cyclononatetraenyl (Cnt) and the cyclooctatetraenyl (Cot) ligand [Ln(Cot)(Cnt)] (Ln=Tb, Dy, Er, Ho, Yb, and Lu) is reported. The coordination behavior of the Cnt ligand has been investigated along the series and shows different coordination patterns in the solid-state depending on the size of the corresponding lanthanide ion without altering its overall anisotropy. Besides the characterization in the solid state by single-crystal X-ray diffraction and in solution by 1 H NMR, static magnetic studies and ab initio computational studies were performed.

8.
Inorg Chem Front ; 8(3): 647-657, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33575034

RESUMO

The reaction of a reactive nickel dimethyl 1 bearing a redox-active, dissymmetric ligand, which is obtained by deprotonation of 2-pyrimidin-2-yl-1H-benzimidazole (Hbimpm) with a divalent lanthanide complex, Cp*2Yb(OEt2), affords an unprecedented, trimeric 2 with C(sp3)-C(sp3) bond formation between two ligands in an exo position. Meanwhile, the transient, dimeric species 3 can be isolated with the same ligand coupling fashion, however, with a drastic distorsion angle of the bimpm ligand and reactive NiMe2 fragment, revealing the possible mechanism of this rearrangement. A much more stable dimeric congener, 5, with an exo ligand coupling, is synthesized in the presence of 18-crown-6, which captures the potassium counter ion. The C-C coupling formation between two bimpm ligands results from the effective electron transfer from divalent lanthanide fragments. Without the divalent lanthanide, the reductive coupling occurs on a different carbon of the ligand, nicely showing the modulation of the spin density induced by the presence of the lanthanide ion. The electronic structures of these complexes are investigated by magnetic study (SQUID), indicating a 2F7/2 ground state for each ytterbium in all the heterometallics. This work firstly reports ligand coupling reactivity in a redox-active, yet dissymmetric system with divalent organolanthanides, and the reactive nickel moiety can impact the intriguing transition towards a stable homoleptic, trinulear lanthanide species.

9.
Chemistry ; 27(23): 6860-6879, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33340383

RESUMO

Over more than 50 years, intermediate valence states in lanthanide compounds have often resulted in unexpected or puzzling spectroscopic and magnetic properties. Such experimental singularities could not be rationalised until new theoretical models involving multiconfigurational electronic ground states were established. In this minireview, the different singularities that have been observed among lanthanide complexes are highlighted, the models used to rationalise them are detailed and how such electronic effects may be adjusted depending on energy and symmetry considerations is considered. Understanding and tuning the ground-state multiconfigurational behaviour in lanthanide complexes may open new doors to modular and unusual reactivities.

10.
Angew Chem Int Ed Engl ; 60(11): 6042-6046, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36530221

RESUMO

Divalent lanthanide organometallics are well-known highly reducing compounds usually used for single electron transfer reactivity and small molecule activation. Thus, their very reactive nature prevented for many years the study of their physical properties, such as magnetic studies on a reliable basis. In this article, the access to rare organometallic sandwich compounds of TmII with the cyclooctatetraenyl (Cot) ligand impacts on the use of divalent organolanthanide compounds as an additional strategy for the design of performing Single Molecule Magnets (SMM). Herein, the first divalent thulium sandwich complex with f13 configuration behaving as a Single Molecule Magnet in absence of DC field is highlighted.

11.
Inorganics (Basel) ; 7(5): 58, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31463301

RESUMO

This article presented the synthesis and characterization of original heterobimetallic species combining a divalent lanthanide fragment and a divalent nickel center bridged by the bipyrimidine ligand, a redox-active ligand. X-ray crystal structures were obtained for the Ni monomer (bipym)NiMe2, 1, as well as the heterobimetallic dimer compounds, Cp*2Yb(bipym)NiMe2, 2, along with 1H solution NMR, solid-state magnetic data, and DFT calculations only for 1. The reactivity with CO was investigated on both compounds and the stoichiometric acetone formation is discussed based on kinetic and mechanistic studies. The key role of the lanthanide fragment was demonstrated by the relatively slow CO migratory insertion step, which indicated the stability of the intermediate.

12.
Chem Sq ; 3: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31463472

RESUMO

This article relates the synthesis and characterization of novel heterobimetallic complexes containing a low-valent lanthanide, a tetradentate redox non-innocent ligand, viz. the 4,5,9,10-tetraazaphenanthrene, taphen ligand and transition metal fragments of PdMe2 and PtMe2. The experimental results are supported by a theoretical study. Investigation of their reduction properties allowed the formation of isostructural original heterotrimetallic complexes containing two Cp*2Yb fragments and the (taphen)MMe2 (M = Pd and Pt) motifs. These complexes are stable in non-coordinating solvent such as toluene but decompose in coordinating solvents such as thf. Investigation of the internal electron transfer shows that the taphen ligand behaves as a two-electrons reservoir but is capable of transferring back only one electron in thf. This reversible electron(s) transfer is rare in organolanthanide chemistry and show the potential interest of these complexes in reductive chemistry. Additionally, the trinuclear complexes feature odd X-ray crystal structures in which a deviation of symmetry is observed. The latter observation was studied in depth using quantum chemistry calculations highlighting the role of non-covalent weak interactions.

13.
Dalton Trans ; 45(32): 12924-32, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477872

RESUMO

The crystal structure of the first oligomeric cobalt dioxolene complex, Co3(3,5-DBSQ)2((t)BuCOO)4(NEt3)2, 1, where DBSQ is 3,5-di-tert-butyl-semiquinonate, has been studied at various temperatures between 20 and 200 K. Despite cobalt-dioxolene complexes being generally known for their extensive ability to exhibit valence tautomerism (VT), we show here that the molecular geometry of compound 1 is essentially unchanged over the full temperature range, indicating the complete absence of electron transfer between ligand and metal. Magnetic susceptibility measurements clearly support the lack of VT between 8 and 300 K. The crystal structure is also determined at elevated pressures in the range from 0 to 2.5 GPa. The response of the crystal structure is surprisingly dependent on the dynamics of pressurisation: following rapid pressurization to 2 GPa, a structural phase transition occurs; yet, this is absent when the pressure is increased incrementally to 2.6 GPa. In the new high pressure phase, Z' is 2 and one of the two molecules displays changes in the coordination of one bridging carboxylate from µ2:κO:κO' to µ2:κ(2)O,O':κO', while the other molecule remains unchanged. Despite the significant changes to the molecular connectivity, analysis of the crystal structures shows that the phase transition leaves the spin and oxidation states of the molecules unaltered. Intermolecular interactions in the high pressure crystal structures have been analysed using Hirshfeld surfaces but they cannot explain the origin of the phase transition. The lack of VT in this first oligomeric Co-dioxolene complex is speculated to be due to the coordination geometry of the terminal Co-atoms, which are trigonal bipyramidally coordinated, different from the more common octahedral coordination. The energy that is gained by a hs-to-ls change in Oh is equal to Δ, while in the case of the trigonal bipyramidal (C3v), the energy gain is equal to the splitting between d(z(2)) and degenerate d(x(2) - y(2))/d(xy), which is significantly less.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...