Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
JCI Insight ; 9(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646934

RESUMO

Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of undifferentiated myeloblasts, and agents that promote differentiation have been effective in this disease but are not curative. Dihydroorotate dehydrogenase inhibitors (DHODHi) have the ability to promote AML differentiation and target aberrant malignant myelopoiesis. We introduce HOSU-53, a DHODHi with significant monotherapy activity, which is further enhanced when combined with other standard-of-care therapeutics. We further discovered that DHODHi modulated surface expression of CD38 and CD47, prompting the evaluation of HOSU-53 combined with anti-CD38 and anti-CD47 therapies, where we identified a compelling curative potential in an aggressive AML model with CD47 targeting. Finally, we explored using plasma dihydroorotate (DHO) levels to monitor HOSU-53 safety and found that the level of DHO accumulation could predict HOSU-53 intolerability, suggesting the clinical use of plasma DHO to determine safe DHODHi doses. Collectively, our data support the clinical translation of HOSU-53 in AML, particularly to augment immune therapies. Potent DHODHi to date have been limited by their therapeutic index; however, we introduce pharmacodynamic monitoring to predict tolerability while preserving antitumor activity. We additionally suggest that DHODHi is effective at lower doses with select immune therapies, widening the therapeutic index.


Assuntos
Leucemia Mieloide Aguda , Pirimidinas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Humanos , Pirimidinas/uso terapêutico , Camundongos , Animais , Di-Hidro-Orotato Desidrogenase , Imunoterapia/métodos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
2.
Nutrients ; 15(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140397

RESUMO

Chronic lymphocytic leukemia (CLL) is a disease characterized by the accumulation of mature CD19+CD5+CD23+ B cells in the bloodstream and in lymphoid organs. It usually affects people over 70 years of age, which limits the options for treatments. The disease is typically well-managed, but to date is still incurable. Hence, the need for novel therapeutic strategies remains. Nurse-like cells (NLCs) are major components of the microenvironment for CLL, supporting tumor cell survival, proliferation, and even drug resistance. They are of myeloid lineage, guided toward differentiating into their tumor-supportive role by the CLL cells themselves. As such, they are analogous to tumor-associated macrophages and represent a major therapeutic target. Previously, it was found that a mushroom extract, Active Hexose-Correlated Compound (AHCC), promoted the death of acute myeloid leukemia cells while preserving normal monocytes. Given these findings, it was asked whether AHCC might have a similar effect on the abnormally differentiated myeloid-lineage NLCs in CLL. CLL-patient PBMCs were treated with AHCC, and it was found that AHCC treatment showed a direct toxic effect against isolated CLL cells. In addition, it significantly reduced the number of tumor-supportive NLCs and altered their phenotype. The effects of AHCC were then tested in the Eµ-TCL1 mouse model of CLL and the MllPTD/WT Flt3ITD/WT model of AML. Results showed that AHCC not only reduced tumor load and increased survival in the CLL and AML models, but it also enhanced antitumor antibody treatment in the CLL model. These results suggest that AHCC has direct and indirect effects against CLL and that it may be of benefit when combined with existing treatments.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Camundongos , Animais , Humanos , Idoso , Idoso de 80 Anos ou mais , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Células Mieloides/metabolismo , Monócitos/metabolismo , Hexoses/farmacologia , Microambiente Tumoral
3.
Cells ; 12(11)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37296612

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterized by the presence of dense stroma that is enriched in hyaluronan (HA), with increased HA levels associated with more aggressive disease. Increased levels of the HA-degrading enzymes hyaluronidases (HYALs) are also associated with tumor progression. In this study, we evaluate the regulation of HYALs in PDAC. METHODS: Using siRNA and small molecule inhibitors, we evaluated the regulation of HYALs using quantitative real-time PCR (qRT-PCR), Western blot analysis, and ELISA. The binding of BRD2 protein on the HYAL1 promoter was evaluated by chromatin immunoprecipitation (ChIP) assay. Proliferation was evaluated by WST-1 assay. Mice with xenograft tumors were treated with BET inhibitors. The expression of HYALs in tumors was analyzed by immunohistochemistry and by qRT-PCR. RESULTS: We show that HYAL1, HYAL2, and HYAL3 are expressed in PDAC tumors and in PDAC and pancreatic stellate cell lines. We demonstrate that inhibitors targeting bromodomain and extra-terminal domain (BET) proteins, which are readers of histone acetylation marks, primarily decrease HYAL1 expression. We show that the BET family protein BRD2 regulates HYAL1 expression by binding to its promoter region and that HYAL1 downregulation decreases proliferation and enhances apoptosis of PDAC and stellate cell lines. Notably, BET inhibitors decrease the levels of HYAL1 expression in vivo without affecting the levels of HYAL2 or HYAL3. CONCLUSIONS: Our results demonstrate the pro-tumorigenic role of HYAL1 and identify the role of BRD2 in the regulation of HYAL1 in PDAC. Overall, these data enhance our understanding of the role and regulation of HYAL1 and provide the rationale for targeting HYAL1 in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Hialuronoglucosaminidase/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Proteínas , Ácido Hialurônico/metabolismo
4.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108786

RESUMO

Overactivation of immune responses is a hallmark of autoimmune disease pathogenesis. This includes the heightened production of inflammatory cytokines such as Tumor Necrosis Factor α (TNFα), and the secretion of autoantibodies such as isotypes of rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA). Fcγ receptors (FcγR) expressed on the surface of myeloid cells bind Immunoglobulin G (IgG) immune complexes. Recognition of autoantigen-antibody complexes by FcγR induces an inflammatory phenotype that results in tissue damage and further escalation of the inflammatory response. Bromodomain and extra-terminal protein (BET) inhibition is associated with reduced immune responses, making the BET family a potential therapeutic target for autoimmune diseases such as rheumatoid arthritis (RA). In this paper, we examined the BET inhibitor PLX51107 and its effect on regulating FcγR expression and function in RA. PLX51107 significantly downregulated expression of FcγRIIa, FcγRIIb, FcγRIIIa, and the common γ-chain, FcϵR1-γ, in both healthy donor and RA patient monocytes. Consistent with this, PLX51107 treatment attenuated signaling events downstream of FcγR activation. This was accompanied by a significant decrease in phagocytosis and TNFα production. Finally, in a collagen-induced arthritis model, PLX51107-treatment reduced FcγR expression in vivo accompanied by a significant reduction in footpad swelling. These results suggest that BET inhibition is a novel therapeutic approach that requires further exploration as a treatment for patients with RA.


Assuntos
Artrite Reumatoide , Receptores de IgG , Humanos , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo , Receptores de IgG/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas do Tecido Nervoso/metabolismo
5.
J Immunol ; 209(6): 1212-1223, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995507

RESUMO

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia, but, despite advances in treatment, many patients still experience relapse. CLL cells depend on interactions with supportive cells, and nurse-like cells (NLCs) are the major such cell type. However, little is known about how NLCs develop. Here, we performed DNA methylation analysis of CLL patient-derived NLCs using the 850K Illumina array, comparing CD14+ cells at day 1 (monocytes) versus day 14 (NLCs). We found a strong loss of methylation in AP-1 transcription factor binding sites, which may be driven by MAPK signaling. Testing of individual MAPK pathways (MEK, p38, and JNK) revealed a strong dependence on MEK/ERK for NLC development, because treatment of patient samples with the MEK inhibitor trametinib dramatically reduced NLC development in vitro. Using the adoptive transfer Eµ-TCL1 mouse model of CLL, we found that MEK inhibition slowed CLL progression, leading to lower WBC counts and to significantly longer survival time. There were also lower numbers of mouse macrophages, particularly within the M2-like population. In summary, NLC development depends on MEK signaling, and inhibition of MEK leads to increased survival time in vivo. Hence, targeting the MEK/ERK pathway may be an effective treatment strategy for CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Animais , Diferenciação Celular , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Fator de Transcrição AP-1/metabolismo
6.
Oncotarget ; 12(9): 878-890, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33953842

RESUMO

Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid blasts and a suppressed immune state. Interferons have been previously shown to aid in the clearance of AML cells. Type I interferons are produced primarily by plasmacytoid dendritic cells (pDCs). However, these cells exist in a quiescent state in AML. Because pDCs express TLR 7-9, we hypothesized that the TLR7/8 agonist R848 would be able to reprogram them toward a more active, IFN-producing phenotype. Consistent with this notion, we found that R848-treated pDCs from patients produced significantly elevated levels of IFNß. In addition, they showed increased expression of the immune-stimulatory receptor CD40. We next tested whether IFNß would influence antibody-mediated fratricide among AML cells, as our recent work showed that AML cells could undergo cell-to cell killing in the presence of the CD38 antibody daratumumab. We found that IFNß treatment led to a significant, IRF9-dependent increase in CD38 expression and a subsequent increase in daratumumab-mediated cytotoxicity and decreased colony formation. These findings suggest that the tolerogenic phenotype of pDCs in AML can be reversed, and also demonstrate a possible means of enhancing endogenous Type I IFN production that would promote daratumumab-mediated clearance of AML cells.

7.
ACS Appl Nano Mater ; 4(3): 3122-3139, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-34027313

RESUMO

BACKGROUND: fluorescent nanodiamonds (FND) are nontoxic, infinitely photostable nanoparticles that emit near-infrared fluorescence and have a modifiable surface allowing for the generation of protein-FND conjugates. FND-mediated immune cell targeting may serve as a strategy to visualize immune cells and promote immune cell activation. METHODS: uncoated-FND (uFND) were fabricated, coated with glycidol (gFND), and conjugated with immunoglobulin G (IgG-gFND). In vitro studies were performed using a breast cancer/natural killer/monocyte co-culture system, and in vivo studies were performed using a breast cancer mouse model. RESULTS: in vitro studies demonstrated the targeted immune cell uptake of IgG-gFND, resulting in significant immune cell activation and no compromise in immune cell viability. IgG-gFND remained at the tumor site following intratumoral injection compared to uFND which migrated to the liver and kidneys. CONCLUSION: antibody-conjugated FND may serve as immune drug delivery vehicles with "track and trace capabilities" to promote directed antitumor activity and minimize systemic toxicities.

8.
J Immunol ; 204(7): 1988-1997, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32094205

RESUMO

TLRs, a family of membrane-bound pattern recognition receptors found on innate immune cells, have been well studied in the context of cancer therapy. Activation of these receptors has been shown to induce inflammatory anticancer events, including differentiation and apoptosis, across a wide variety of malignancies. In contrast, intracellular pattern recognition receptors such as NOD-like receptors have been minimally studied. NOD2 is a member of the NOD-like receptor family that initiates inflammatory signaling in response to the bacterial motif muramyl dipeptide. In this study, we examined the influence of NOD2 in human acute myeloid leukemia (AML) cells, demonstrating that IFN-γ treatment upregulated the expression of NOD2 signaling pathway members SLC15A3 and SLC15A4, downstream signaling kinase RIPK2, and the NOD2 receptor itself. This priming allowed for effective induction of caspase-1-dependent cell death upon treatment with muramyl tripeptide phosphatidylethanolamine (MTP-PE), a synthetic ligand for NOD2. Furthermore, the combination of MTP-PE and IFN-γ on AML blasts generated an inflammatory cytokine profile and activated NK cells. In a murine model of AML, dual treatment with MTP-PE and IFN-γ led to a significant increase in mature CD27- CD11b+ NK cells as well as a significant reduction in disease burden and extended survival. These results suggest that NOD2 activation, primed by IFN-γ, may provide a novel therapeutic option for AML.


Assuntos
Apoptose/fisiologia , Leucemia Mieloide Aguda/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Interferon gama/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
9.
J Immunol ; 203(12): 3216-3224, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31732534

RESUMO

Monocytes and macrophages express FcγR that engage IgG immune complexes such as Ab-opsonized pathogens or cancer cells to destroy them by various mechanisms, including phagocytosis. FcγR-mediated phagocytosis is regulated by the concerted actions of activating FcγR and inhibitory receptors, such as FcγRIIb and SIRPα. In this study, we report that another ITIM-containing receptor, PECAM1/CD31, regulates FcγR function and is itself regulated by FcγR activation. First, quantitative RT-PCR and flow cytometry analyses revealed that human monocyte FcγR activation leads to a significant downregulation of CD31 expression, both at the message level and at surface expression, mainly mediated through FcγRIIa. Interestingly, the kinetics of downregulation between the two varied, with surface expression reducing earlier than the message. Experiments to analyze the mechanism behind this discrepancy revealed that the loss of surface expression was because of internalization, which depended predominantly on the PI3 kinase pathway and was independent of FcγR internalization. Finally, functional analyses showed that the downregulation of CD31 expression in monocytes by small interfering RNA enhanced FcγR-mediated phagocytic ability but have little effect on cytokine production. Together, these results suggest that CD31 acts as a checkpoint receptor that could be targeted to enhance FcγR functions in Ab-mediated therapies.


Assuntos
Monócitos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores de IgG/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Doadores de Sangue , Citocinas/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Imunoglobulina G/metabolismo , Fagocitose/genética , Fosfatidilinositol 3-Quinases/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/imunologia
10.
Oncoimmunology ; 8(11): 1659704, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646085

RESUMO

An inflammatory microenvironment has been shown to play an important role in the growth and metastasis of tumors. The NLRP3 inflammasome is a multi-protein complex of the innate immune system that is responsible for the production of the potent inflammatory cytokine IL-1ß. Tumor- associated macrophages (TAM) are an expanded population of immune cells found in the tumor microenvironment that can promote the initiation and metastasis of tumor cells. Their presence has been correlated with disease burden, highlighting the therapeutic potential of targeting this population. However, to date clinically relevant pharmacologic strategies to target TAM remain elusive. Here, we show that in vitro generated TAM harbor NLRP3 inflammasome components and produce IL-1ß. Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK), is in clinical use for the treatment of B- cell malignancies. We report that BTK is expressed by human in vitro generated TAM and murine macrophages and that it physically associates with the NLRP3 inflammasome. Furthermore, ibrutinib is able to inhibit BTK phosphorylation in TAM generated in vitro. Treatment of TAM with ibrutinib significantly impaired the ability of these cells to produce IL-1ß. The present study provides evidence that BTK physically associates with the NLRP3 inflammasome and that inhibition of BTK with ibrutinib can impair the production of IL-1ß by in vitro generated TAM. Thus, ibrutinib could potentially be of clinical use in abrogating inflammation-associated cancer progression and the immune-suppressive effects of myeloid cells within the tumor microenvironment.

11.
Melanoma Res ; 29(5): 491-500, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31116161

RESUMO

Neuroblastoma RAS viral oncogene homolog is a commonly mutated oncogene in melanoma, and therapeutic targeting of neuroblastoma RAS viral oncogene homolog has proven difficult. We characterized the expression and phenotypic functions of five recently discovered splice isoforms of neuroblastoma RAS viral oncogene homolog in melanoma. Canonical neuroblastoma RAS viral oncogene homolog (isoform-1) was expressed to the highest degree and its expression was significantly increased in melanoma metastases compared to primary lesions. Isoform-5 expression in metastases showed a significant, positive correlation with survival and tumours over-expressing isoform-5 had significantly decreased growth in a xenograft model. In contrast, over-expression of any isoform resulted in enhanced proliferation, and invasiveness was increased with over-expression of isoform-1 or isoform-2. Downstream signalling analysis indicated that the isoforms signalled differentially through the mitogen-activated protein kinase and PI3K pathways and A375 cells over-expressing isoform-2 or isoform-5 showed resistance to vemurafenib treatment in vitro. The neuroblastoma RAS viral oncogene homolog isoforms appear to play varying roles in melanoma phenotype and could potentially serve as biomarkers for therapeutic response and disease prognosis.


Assuntos
Processamento Alternativo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Melanoma/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/terapia , Camundongos , Camundongos Nus , Mutação , Metástase Neoplásica , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Neoplasias Cutâneas/terapia , Vemurafenib/uso terapêutico
12.
Clin Cancer Res ; 25(16): 4955-4965, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31142501

RESUMO

PURPOSE: mAbs including cetuximab can induce antibody-dependent cellular cytotoxicity (ADCC) and cytokine production mediated via innate immune cells with the ability to recognize mAb-coated tumors. Preclinical modeling has shown that costimulation of natural killer (NK) cells via the Fc receptor and the IL12 receptor promotes NK-cell-mediated ADCC and production of cytokines. PATIENTS AND METHODS: This phase I/II trial evaluated the combination of cetuximab with IL12 for the treatment of EGFR-expressing head and neck cancer. Treatment consisted of cetuximab 500 mg/m2 i.v. every 2 weeks with either 0.2 mcg/kg or 0.3 mcg/kg IL12 s.c. on days 2 and 5 of the 2-week cycle, beginning with cycle 2. Correlative studies from blood draws obtained prior to treatment and during therapy included measurement of ADCC, serum cytokine, and chemokine analysis, determination of NK cell FcγRIIIa polymorphisms, and an analysis of myeloid-derived suppressor cell (MDSC) frequency in peripheral blood. RESULTS: The combination of cetuximab and IL12 was well tolerated. No clinical responses were observed, however, 48% of patients exhibited prolonged progression-free survival (PFS; average of 6.5 months). Compared with patients that did not exhibit clinical benefit, patients with PFS >100 days exhibited increased ADCC as therapy continued compared with baseline, greater production of IFNγ, IP-10, and TNFα at the beginning of cycle 8 compared with baseline values and had a predominance of monocytic MDSCs versus granulocytic MDSCs prior to therapy. CONCLUSIONS: Further investigation of IL12 as an immunomodulatory agent in combination with cetuximab in head and neck squamous cell carcinoma is warranted.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores Tumorais , Cetuximab/administração & dosagem , Citocinas/biossíntese , Esquema de Medicação , Feminino , Humanos , Interleucina-12/administração & dosagem , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Polimorfismo Genético , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Resultado do Tratamento
13.
J Immunother Cancer ; 7(1): 140, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138333

RESUMO

BACKGROUND: Tumor-associated macrophages (TAM) are expanded and exhibit tumor-promoting properties within the tumor microenvironment. Current methods to study TAM have not been replicated across cancer types and often do not include exogenous growth factors from the tumor, a key factor in TAM differentiation in vivo. METHODS: In this study, an in vitro method to generate monocyte- derived TAM using tumor- conditioned media (TCM) and a cytokine cocktail containing IL-4, IL-10, and M-CSF was utilized to study the phenotype, morphology, and function of TAM across multiple cancer types. TCM was generated from two breast cancer cell lines and an Epstein-Barr virus-positive lymphoma cell line. The properties of in vitro generated TAM were compared to in vitro generated M1 and M2- like macrophages and TAM isolated from patients with cancer. RESULTS: TAM generated in this fashion displayed an increase in CD163/CD206 co-expression compared to M2- like macrophages (87 and 36%, respectively). TAM generated in vitro exhibited increased transcript levels of the functional markers IL-6, IL-10, CCL2, c-Myc, iNOS, and arginase compared to in vitro generated M2-like macrophages. Functionally, in vitro generated TAM inhibited the proliferation of T cells (47% decrease from M1-like macrophages) and the production of IFN-γ by natural killer cells was inhibited (44%) when co-cultured with TAM. Furthermore, in vitro generated TAM secreted soluble factors that promote the growth and survival of tumor cells. CONCLUSIONS: Limited access to patient TAM highlights the need for methods to generate TAM in vitro. Our data confirm that monocyte-derived TAM can be generated reliably using TCM plus the cytokine cocktail of IL-4, IL-10, and M-CSF. Given the ability of TAM to inhibit immune cell function, continued study of methods to deplete or deactivate TAM in the setting of cancer are warranted.


Assuntos
Transformação Celular Neoplásica/patologia , Imunoterapia/métodos , Macrófagos/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Humanos , Microambiente Tumoral
14.
Blood Adv ; 3(3): 447-460, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737226

RESUMO

The Bruton tyrosine kinase inhibitor (BTKi) ibrutinib has transformed chronic lymphocytic leukemia (CLL) therapy but requires continuous administration. These factors have spurred interest in combination treatments. Unlike with chemotherapy, CD20-directed antibody therapy has not improved the outcome of BTKi treatment. Whereas CD20 antigen density on CLL cells decreases during ibrutinib treatment, the B-cell activating factor (BAFF) and its receptor (BAFF-R) remain elevated. Furthermore, BAFF signaling via noncanonical NF-κB remains elevated with BTKi treatment. Blocking BAFF interaction with BAFF-R by using VAY-736, a humanized defucosylated engineered antibody directed against BAFF-R, antagonized BAFF-mediated apoptosis protection and signaling at the population and single-cell levels in CLL cells. Furthermore, VAY-736 showed superior antibody-dependent cellular cytotoxicity compared with CD20- and CD52-directed antibodies used in CLL. VAY-736 exhibited in vivo activity as a monotherapy and, when combined with ibrutinib, produced prolonged survival compared with either therapy alone. The in vivo activity of VAY-736 is dependent upon immunoreceptor tyrosine-based activation motif (ITAM)-mediated activation of effector cells as shown by using an ITAM-deficient mouse model. Collectively, our findings support targeting the BAFF signaling pathway with VAY-736 to more effectively treat CLL as a single agent and in combination with ibrutinib.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Adenina/análogos & derivados , Animais , Humanos , Camundongos , Piperidinas , Pirazóis/farmacologia , Pirimidinas/farmacologia
15.
Int Immunol ; 30(8): 375-383, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29868798

RESUMO

Acute myeloid leukemia (AML) remains a significant health problem, with poor outcomes despite chemotherapy and bone marrow transplants. Although one form of AML, acute promyelocytic leukemia (APL), is successfully treated with all-trans retinoic acid (ATRA), this drug is seemingly ineffective against all other forms of AML. Here, we show that ATRA up-regulates CD38 expression on AML blasts to sufficient levels that promote antibody-mediated fratricide following the addition of anti-CD38 daratumumab (DARA). The combination of ATRA plus DARA induced Fc-dependent conjugate formation and cytotoxicity among AML blasts in vitro. Combination treatment also led to reduction in tumor volume and resulted in increased overall survival in murine engraftment models of AML. These results suggest that, although ATRA does not induce differentiation of non-APL, it may be effective as a therapy in conjunction with DARA.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Tretinoína/farmacologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Quimioterapia Combinada , Humanos , Leucemia Mieloide Aguda/patologia , Tretinoína/química , Tretinoína/uso terapêutico , Células Tumorais Cultivadas
17.
Clin Cancer Res ; 24(8): 1891-1904, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29363526

RESUMO

Purpose: mAbs are used to treat solid and hematologic malignancies and work in part through Fc receptors (FcRs) on natural killer cells (NK). However, FcR-mediated functions of NK cells from patients with cancer are significantly impaired. Identifying the mechanisms of this dysfunction and impaired response to mAb therapy could lead to combination therapies and enhance mAb therapy.Experimental Design: Cocultures of autologous NK cells and MDSC from patients with cancer were used to study the effect of myeloid-derived suppressor cells (MDSCs) on NK-cell FcR-mediated functions including antibody-dependent cellular cytotoxicity, cytokine production, and signal transduction in vitro Mouse breast cancer models were utilized to study the effect of MDSCs on antibody therapy in vivo and test the efficacy of combination therapies including a mAb and an MDSC-targeting agent.Results: MDSCs from patients with cancer were found to significantly inhibit NK-cell FcR-mediated functions including antibody-dependent cellular cytotoxicity, cytokine production, and signal transduction in a contact-independent manner. In addition, adoptive transfer of MDSCs abolished the efficacy of mAb therapy in a mouse model of pancreatic cancer. Inhibition of iNOS restored NK-cell functions and signal transduction. Finally, nonspecific elimination of MDSCs or inhibition of iNOS in vivo significantly improved the efficacy of mAb therapy in a mouse model of breast cancer.Conclusions: MDSCs antagonize NK-cell FcR-mediated function and signal transduction leading to impaired response to mAb therapy in part through nitric oxide production. Thus, elimination of MDSCs or inhibition of nitric oxide production offers a strategy to improve mAb therapy. Clin Cancer Res; 24(8); 1891-904. ©2018 AACR.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Óxido Nítrico/biossíntese , Receptores Fc/metabolismo , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Sci Rep ; 7(1): 15424, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133913

RESUMO

Myeloid derived suppressor cells (MDSC) produce nitric oxide (NO) and inhibit dendritic cell (DC) immune responses in cancer. DCs present cancer cell antigens to CD4+ T cells through Jak-STAT signal transduction. In this study, NO donors (SNAP and DETA-NONOate) inhibited DC antigen presentation. As expected, MDSC isolated from peripheral blood mononuclear cells (PBMC) from cancer patients produced high NO levels. We hypothesized that NO producing MDSC in tumor-bearing hosts would inhibit DC antigen presentation. Antigen presentation from DCs to CD4+ T cells (T cell receptor transgenic OT-II) was measured via a [3H]-thymidine incorporation proliferation assay. MDSC from melanoma tumor models decreased the levels of proliferation more than pancreatic cancer derived MDSC. T cell proliferation was restored when MDSC were treated with inhibitors of inducible nitric oxide synthase (L-NAME and NCX-4016). A NO donor inhibited OT II T cell receptor recognition of OT II specific tetramers, thus serving as a direct measure of NO inhibition of antigen presentation. Our group has previously demonstrated that STAT1 nitration also mediates MDSC inhibitory effects on immune cells. Therefore, a novel liquid chromatography-tandem mass spectrometry assay demonstrated that nitration of the STAT1-Tyr701 occurs in PBMC derived from both pancreatic cancer and melanoma patients.


Assuntos
Melanoma Experimental/imunologia , Células Supressoras Mieloides/metabolismo , Óxido Nítrico/metabolismo , Neoplasias Pancreáticas/imunologia , Fator de Transcrição STAT1/metabolismo , Animais , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Humanos , Melanoma Experimental/patologia , Camundongos , Camundongos Transgênicos , Células Supressoras Mieloides/imunologia , Óxido Nítrico/imunologia , Doadores de Óxido Nítrico/metabolismo , Neoplasias Pancreáticas/sangue , Fator de Transcrição STAT1/análise , Espectrometria de Massas em Tandem
19.
Proc Natl Acad Sci U S A ; 114(36): 9629-9634, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827320

RESUMO

Activating mutations in BRAF are found in 50% of melanomas and although treatment with BRAF inhibitors (BRAFi) is effective, resistance often develops. We now show that recently discovered NRAS isoform 2 is up-regulated in the setting of BRAF inhibitor resistance in melanoma, in both cell lines and patient tumor tissues. When isoform 2 was overexpressed in BRAF mutant melanoma cell lines, melanoma cell proliferation and in vivo tumor growth were significantly increased in the presence of BRAFi treatment. shRNA-mediated knockdown of isoform 2 in BRAFi resistant cells restored sensitivity to BRAFi compared with controls. Signaling analysis indicated decreased mitogen-activated protein kinase (MAPK) pathway signaling and increased phosphoinositol-3-kinase (PI3K) pathway signaling in isoform 2 overexpressing cells compared with isoform 1 overexpressing cells. Immunoprecipitation of isoform 2 validated a binding affinity of this isoform to both PI3K and BRAF/RAF1. The addition of an AKT inhibitor to BRAFi treatment resulted in a partial restoration of BRAFi sensitivity in cells expressing high levels of isoform 2. NRAS isoform 2 may contribute to resistance to BRAFi by facilitating PI3K pathway activation.


Assuntos
GTP Fosfo-Hidrolases/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular , Resistencia a Medicamentos Antineoplásicos/genética , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Indóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Melanoma/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Neoplasias Cutâneas/metabolismo , Sulfonamidas/uso terapêutico , Regulação para Cima , Vemurafenib
20.
PLoS One ; 12(7): e0181729, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28727820

RESUMO

Active Hexose Correlated Compound (AHCC) has been shown to have many immunostimulatory and anti-cancer activities in mice and in humans. As a natural product, AHCC has potential to create safer adjuvant therapies in cancer patients. Acute Myeloid Leukemia (AML) is the least curable and second-most common leukemia in adults. AML is especially terminal to those over 60 years old, where median survival is only 5 to 10 months, due to inability to receive intensive chemotherapy. Hence, the purpose of this study was to investigate the effects of AHCC on AML cells both in vitro and in vivo. Results showed that AHCC induced Caspase-3-dependent apoptosis in AML cell lines as well as in primary AML leukopheresis samples. Additionally, AHCC induced Caspase-8 cleavage as well as Fas and TRAIL upregulation, suggesting involvement of the extrinsic apoptotic pathway. In contrast, monocytes from healthy donors showed suppressed Caspase-3 cleavage and lower cell death. When tested in a murine engraftment model of AML, AHCC led to significantly increased survival time and decreased blast counts. These results uncover a mechanism by which AHCC leads to AML-cell specific death, and also lend support for the further investigation of AHCC as a potential adjuvant for the treatment of AML.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Polissacarídeos/farmacologia , Animais , Apoptose/fisiologia , Western Blotting , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Leucemia Mieloide Aguda/metabolismo , Camundongos SCID , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transplante de Neoplasias , Reação em Cadeia da Polimerase em Tempo Real , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...