Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Brain ; 3: 100080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346145

RESUMO

Objective: Clusterin is involved in a variety of physiological processes, including proteostasis. Several clusterin polymorphisms were associated with an increased risk of developing Alzheimer's disease, the world-leading cause of dementia. Herein, the effect of a clusterin polymorphism, aging and dementia in the levels of clusterin in human plasma were analysed in a primary care-based cohort, and the association of this chaperone with fibrillar structures discussed. Methods: 64 individuals with dementia (CDR≥1) and 64 age- and sex-matched Controls from a Portuguese cohort were genotyped for CLU rs1136000 polymorphism, and the plasma levels of clusterin and fibrils were assessed. Results: An increased prevalence of the CC genotype was observed for the dementia group, although no significant robustness was achieved. CLU rs11136000 SNP did not significantly change plasma clusterin levels in demented individuals. Instead, clusterin levels decreased with aging and even more in individuals with dementia. Importantly, plasma clusterin levels correlated with the presence of fibrillar structures in Control individuals, but not in those with dementia. Conclusion: This study reveals a significant decrease in plasma clusterin in demented individuals with aging, which related to altered clusterin-fibrils dynamics. Potentially, plasma clusterin and its association with fibrillar structures can be used to monitor dementia progression along aging.

2.
Arch Med Res ; 54(3): 211-222, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36797157

RESUMO

BACKGROUND: Proteostasis impairment and the consequent increase of amyloid burden in the myocardium have been associated with heart failure (HF) development and poor prognosis. A better knowledge of the protein aggregation process in biofluids could assist the development and monitoring of tailored interventions. AIM: To compare the proteostasis status and protein's secondary structures in plasma samples of patients with HF with preserved ejection fraction (HFpEF), patients with HF with reduced ejection fraction (HFrEF), and age-matched individuals. METHODS: A total of 42 participants were enrolled in 3 groups: 14 patients with HFpEF, 14 patients with HFrEF, and 14 age-matched individuals. Proteostasis-related markers were analyzed by immunoblotting techniques. Fourier Transform Infrared (FTIR) Spectroscopy in Attenuated Total Reflectance (ATR) was applied to assess changes in the protein's conformational profile. RESULTS: Patients with HFrEF showed an elevated concentration of oligomeric proteic species and reduced clusterin levels. ATR-FTIR spectroscopy coupled with multivariate analysis allowed the discrimination of HF patients from age-matched individuals in the protein amide I absorption region (1700-1600 cm-1), reflecting changes in protein conformation, with a sensitivity of 73 and a specificity of 81%. Further analysis of FTIR spectra showed significantly reduced random coils levels in both HF phenotypes. Also, compared to the age-matched group, the levels of structures related to fibril formation were significantly increased in patients with HFrEF, whereas the ß-turns were significantly increased in patients with HFpEF. CONCLUSION: Both HF phenotypes showed a compromised extracellular proteostasis and different protein conformational changes, suggesting a less efficient protein quality control system.


Assuntos
Insuficiência Cardíaca , Humanos , Volume Sistólico , Proteostase , Fenótipo , Prognóstico
3.
Cells ; 11(10)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35626723

RESUMO

Hypertension is the most determinant risk factor for cardiovascular diseases. Early intervention and future therapies targeting hypertension mechanisms may improve the quality of life and clinical outcomes. Hypertension has a complex multifactorial aetiology and was recently associated with protein homeostasis (proteostasis). This work aimed to characterize proteostasis in easy-to-access plasma samples from 40 individuals, 20 with controlled hypertension and 20 age- and gender-matched normotensive individuals. Proteostasis was evaluated by quantifying the levels of protein aggregates through different techniques, including fluorescent probes, slot blot immunoassays and Fourier-transform infrared spectroscopy (FTIR). No significant between-group differences were observed in the absolute levels of various protein aggregates (Proteostat or Thioflavin T-stained aggregates; prefibrillar oligomers and fibrils) or total levels of proteostasis-related proteins (Ubiquitin and Clusterin). However, significant positive associations between Endothelin 1 and protein aggregation or proteostasis biomarkers (such as fibrils and ubiquitin) were only observed in the hypertension group. The same is true for the association between the proteins involved in quality control and protein aggregates. These results suggest that proteostasis mechanisms are actively engaged in hypertension as a coping mechanism to counteract its pathological effects in proteome stability, even when individuals are chronically medicated and presenting controlled blood pressure levels.


Assuntos
Hipertensão , Proteostase , Humanos , Agregados Proteicos , Proteoma , Proteostase/fisiologia , Qualidade de Vida , Ubiquitina
4.
Mol Neurobiol ; 59(5): 2838-2854, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35212939

RESUMO

Exosomes are small extracellular vesicles (EVs) present in human biofluids that can transport specific disease-associated molecules. Consequently blood-derived exosomes have emerged as important peripheral biomarker sources for a wide range of diseases, among them Alzheimer's disease (AD). Although there is no effective cure for AD, an accurate diagnosis, relying on easily accessible peripheral biofluids, is still necessary to discriminate this disease from other dementias, test potential therapies and even monitor rate of disease progression. The ultimate goal is to produce a cost-effective and widely available alternative, which can also be employed as a first clinical screen. In this study, EVs with exosome-like characteristics were isolated from serum of Controls and AD cases through precipitation- and column-based methods, followed by mass spectrometry analysis. The resulting proteomes were characterized by Gene Ontology (GO) and multivariate analyses. Although GO terms were similar for exosomes' proteomes of Controls and ADs, using both methodologies, a clear segregation of disease cases was obtained when using the precipitation-based method. Nine significantly different abundant proteins were identified between Controls and AD cases, representing putative biomarker candidate targets. Among them are AACT and C4BPα, two Aß-binding proteins, whose exosome levels were further validated in individuals from independent cohorts using antibody-based approaches. The findings discussed represent an important contribution to the identification of novel exosomal biomarker candidates useful as potential blood-based tools for AD diagnosis.


Assuntos
Doença de Alzheimer , Exossomos , Doença de Alzheimer/metabolismo , Biomarcadores/metabolismo , Exossomos/metabolismo , Humanos , Espectrometria de Massas , Proteoma/metabolismo
5.
J Neurochem ; 156(2): 162-181, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32618370

RESUMO

Exosomes are small extracellular vesicles released by almost all cell types in physiological and pathological conditions. The exosomal potential to unravel disease mechanisms, or to be used as a source of biomarkers, is being explored, in particularly in the field of neurodegenerative diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the world and exosomes appear to have a relevant role in disease pathogenesis. This review summarizes the current knowledge on exosome contributions to AD as well as their use as disease biomarker resources or therapeutic targets. The most recent findings with respect to both protein and miRNA biomarker candidates for AD, herein described, highlight the state of the art in this field and encourage the use of exosomes derived from biofluids in clinical practice in the near future.


Assuntos
Doença de Alzheimer , Exossomos , Animais , Biomarcadores , Humanos
6.
Curr Alzheimer Res ; 17(11): 985-1000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33256579

RESUMO

BACKGROUND: Chronic inflammation is a feature of Alzheimer´s disease (AD), resulting in excessive production of inflammatory mediators that can lead to neuroinflammation, contributing to alterations in Aß production and deposition as Senile Plaques (SPs), and to neurofibrillary tangles (NFTs) formation, due to hyperphosphorylated Tau protein. OBJECTIVE: This work addressed the impact of the interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), two chemokines, on Tau phosphorylation; and also evaluated the chemokines' levels in plasma using samples from a regional cohort. METHODS: Human neuronal SH-SY5Y cells exposed to IL-8 and MCP-1 chemokines were monitored for their protein and phosphorylated protein levels by western blotting analysis. A serine/threonine protein phosphatase (PPs) activity assay was employed to monitor PPs activity. Subsequently, flow cytometry was used to monitor chemokines levels in plasma samples from individuals with cognitive deficits. RESULTS: Chemokines' exposure resulted only in minor cytotoxicity effects on SH-SY5Y, and in increased Tau phosphorylation, particularly at the S396 residue. Tau phosphorylation correlated with PPs inhibition and was consistent with GSK3ß phosphorylation-mediated inhibition. Subsequent analysis of plasma from individuals with cognitive deficits showed that IL-8 levels were decreased. CONCLUSION: Data shows that both chemokines tested can exert an effect on GSK3ß phosphorylation and modulate PPs activity, potentially resulting in increased Tau phosphorylation and subsequent NFTs formation. One can deduce that increased chemokines stimulation during chronic inflammation can exacerbate this event. The work contributes to a better understanding of the mode of action of these chemokines on AD pathogenesis and opens novel research avenues.


Assuntos
Quimiocina CCL2/sangue , Interleucina-8/sangue , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/fisiologia , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Transtornos Cognitivos/patologia , Humanos , Placa Amiloide/patologia
7.
Clin Chim Acta ; 502: 25-33, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31790700

RESUMO

The loss of proteostasis during aging has been well described using different models, however little is known with respect to protein aggregation levels in biofluids with aging. Therefore, the aim of this study was to assess the pattern of age-related protein aggregation in human plasma using two distinct approaches: analysis with conformation-specific antibodies and FTIR spectroscopy. The latter has been widely used in biomedical research to study protein conformational changes in health and disease. Samples from a primary care based-cohort from the Aveiro region, Portugal, were used for slot-blot analyses followed by immunodetection with conformation-specific antibodies and for the acquisition of FTIR spectra. Immunoblot analyses revealed an age-dependent evolution of the protein conformational profile in human plasma, towards a decrease in prefibrillar oligomers and an increase in fibrillar structures. This finding was also supported by PLS-R multivariate analysis of FTIR data, where a positive correlation between the age of the donors and secondary structure of plasma proteins could be observed. Samples from younger donors are characterized by antiparallel ß-sheet-containing structures while intermolecular ß-sheets characterized older samples. Exclusion of age-associated co-morbidities improved the correlation between protein conformational profiles and aging. The results reveal structural changes in human plasma proteins from middle to old age, confirming the age-associated changes in protein aggregation, and support the applicability of FTIR as a reliable approach to study proteostasis during aging.


Assuntos
Envelhecimento , Anticorpos/química , Proteínas Sanguíneas/análise , Idoso , Estudos de Coortes , Humanos , Análise dos Mínimos Quadrados , Pessoa de Meia-Idade , Agregados Proteicos , Conformação Proteica , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Int J Biochem Cell Biol ; 95: 35-42, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233735

RESUMO

The pro-apoptotic Bax protein is the main effector of mitochondrial permeabilization during apoptosis. Bax is controlled at several levels, including post-translational modifications such as phosphorylation and S-palmitoylation. However, little is known about the contribution of other protein modifications to Bax activity. Here, we used heterologous expression of human Bax in yeast to study the involvement of N-terminal acetylation by yNaa20p (yNatB) on Bax function. We found that human Bax is N-terminal (Nt-)acetylated by yNaa20p and that Nt-acetylation of Bax is essential to maintain Bax in an inactive conformation in the cytosol of yeast and Mouse Embryonic Fibroblast (MEF) cells. Bax accumulates in the mitochondria of yeast naa20Δ and Naa25-/- MEF cells, but does not promote cytochrome c release, suggesting that an additional step is required for full activation of Bax. Altogether, our results show that Bax N-terminal acetylation by NatB is involved in its mitochondrial targeting.


Assuntos
Apoptose , Citosol/metabolismo , Mitocôndrias/metabolismo , Acetiltransferase N-Terminal B/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína X Associada a bcl-2/metabolismo , Acetilação , Animais , Células Cultivadas , Cruzamentos Genéticos , Citosol/enzimologia , Embrião de Mamíferos/citologia , Deleção de Genes , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/enzimologia , Acetiltransferase N-Terminal B/genética , Conformação Proteica , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Especificidade por Substrato , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética
9.
Microb Cell ; 3(10): 500-510, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28357318

RESUMO

Mitochondrial outer membrane permeabilization is a key event in apoptosis processes leading to the release of lethal factors. We have previously shown that absence of the ADP/ATP carrier (AAC) proteins (yeast orthologues of mammalian ANT proteins) increased the resistance of yeast cells to acetic acid, preventing MOMP and the release of cytochrome c from mitochondria during acetic acid - induced apoptosis. On the other hand, deletion of POR1 (yeast voltage-dependent anion channel - VDAC) increased the sensitivity of yeast cells to acetic acid. In the present work, we aimed to further characterize the role of yeast VDAC in acetic acid - induced apoptosis and assess if it functionally interacts with AAC proteins. We found that the sensitivity to acetic acid resulting from POR1 deletion is completely abrogated by the absence of AAC proteins, and propose that Por1p acts as a negative regulator of acetic acid - induced cell death by a mechanism dependent of AAC proteins, by acting on AAC - dependent cytochrome c release. Moreover, we show that Por1p has a role in mitochondrial fusion that, contrary to its role in apoptosis, is not affected by the absence of AAC, and demonstrate that mitochondrial network fragmentation is not sufficient to induce release of cytochrome c or sensitivity to acetic acid - induced apoptosis. This work enhances our understanding on cytochrome c release during cell death, which may be relevant in pathological scenarios where MOMP is compromised.

10.
FEMS Yeast Res ; 14(1): 160-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24103214

RESUMO

It has been established that sphingolipids are engaged in the regulation of apoptosis both as direct executors and as signalling molecules. However, the peculiarities of this class of bioactive lipids, namely the interconnectivity of their metabolic pathways, the specific subcellular localization where they are generated and the transport mechanisms involved, introduce a considerably high level of complexity in deciphering their role in the signalling and regulation of programmed cell death. Although yeast is undeniably a simple model, the conservation of the sphingolipid metabolism and of the core machinery engaged in regulated cell death has already provided valuable clues to the understanding of metabolic pathways involved in distinct cellular processes, including apoptosis. It can be anticipated that studies using this model system will further unravel mechanisms underlying the regulation of apoptosis by sphingolipids and contribute to novel therapeutic strategies against serious human diseases associated with dysfunction of sphingolipid-dependent cell death programmes.


Assuntos
Apoptose/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Controle Social Formal , Esfingolipídeos/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...