Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 44(4): 1268-1277, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33176015

RESUMO

When plants compete what influences that interaction? To answer this we measured belowground competition directly, as the simultaneous capture of soil ammonium and nitrate by co-existing herbaceous perennials, Dactylis glomerata and Plantago lanceolata, under the influence of: species identity; N uptake and biomass of focal and neighbour plants; location (benign lowland versus harsher upland site); N availability (low or high N fertilizer); N ion, ammonium or nitrate production (mineralisation) rate, and competition type (intra- or interspecific), as direct effects or pairwise interactions in linear models. We also measured biomass as an indirect proxy for competition. Only three factors influenced both competitive N uptake and biomass production: focal species identity, N ion and the interaction between N ion and neighbour N uptake. Location had little effect on N uptake but a strong influence on biomass production. N uptake increased linearly with biomass only in isolated plants. Our results support the view that measuring resource capture or biomass production tells you different things about how competitors interact with one another and their environment, and that biomass is a longer-term integrative proxy for the outcomes of multiple separate interactions-such as competition for N-occurring between plants.


Assuntos
Dactylis/fisiologia , Ecologia , Plantago/fisiologia , Biomassa , Dactylis/metabolismo , Nitrogênio/metabolismo , Nutrientes/metabolismo , Plantago/metabolismo
2.
PLoS One ; 7(1): e29413, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22247775

RESUMO

Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of ¹5N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO3⁻ or NH4⁺). Soil N availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman's theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime's theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition.


Assuntos
Clima , Nitrogênio/metabolismo , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Solo/análise , Água/metabolismo , Ecossistema , Meio Ambiente
3.
FEMS Microbiol Ecol ; 64(3): 433-48, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18430005

RESUMO

Peatlands are important reservoirs of carbon (C) but our understanding of C cycling on cutover peatlands is limited. We investigated the decomposition over 18 months of five types of plant litter (Calluna vulgaris, Eriophorum angustifolium, Eriophorum vaginatum, Picea sitchensis and Sphagnum auriculatum) at a cutover peatland in Scotland, at three water tables. We measured changes in C, nitrogen (N) and phosphorus (P) in the litter and used denaturing gradient gel electrophoresis to investigate changes in fungal community composition. The C content of S. auriculatum litter did not change throughout the incubation period whereas vascular plant litters lost 30-40% of their initial C. There were no differences in C losses between low and medium water tables, but losses were always significantly less at the high water table. Most litters accumulated N and E. angustifolium accumulated significant quantities of P. C, N and P were significant explanatory variables in determining changes in fungal community composition but explained <25% of the variation. Litter type was always a stronger factor than water table in determining either fungal community composition or turnover of C, N and P in litter. The results have implications for the ways restoration programmes and global climate change may impact upon nutrient cycling in cutover peatlands.


Assuntos
Carbono/metabolismo , Microbiologia Ambiental , Fungos/classificação , Fungos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Impressões Digitais de DNA , DNA Fúngico/genética , Eletroforese em Gel de Poliacrilamida , Fungos/isolamento & purificação , Nitrogênio/metabolismo , Desnaturação de Ácido Nucleico , Fósforo/metabolismo , Escócia , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...