Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lasers Med Sci ; 30(4): 1357-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25794592

RESUMO

Gold-based nanoparticles have been used in a number of therapeutic and diagnostic applications. The purpose of this study was to investigate the efficacy of gold-silica nanoshells (AuNS) in photothermal therapy (PTT) of rat gliomas. Rat alveolar macrophages (Ma) were used as nanoparticle delivery vectors. Uptake of AuNS (bare and PEGylated) was investigated in Ma. AuNS were incubated with Ma for 24 h. Phase contrast microscopy was used to visualize the distribution of loaded Ma in three-dimensional glioma spheroids. PTT efficacy was evaluated for both empty (Ma) and AuNS-loaded Ma (Ma(NS)) in both monolayers and spheroids consisting of C6 rat glioma cells and Ma. Monolayers/spheroids were irradiated for 5 min with light from an 810-nm diode laser at irradiances ranging from 7 to 28 W cm(-2). Monolayer survival was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay while PTT efficacy in spheroids was determined from growth kinetics and live/dead fluorescence microscopy. PTT efficacy was investigated in vivo using a Sprague-Dawley rat glioma model. Five rats received direct intracranial injection of a mixture of 10(4) C6 glioma cells and, 2 days later, an equal number of Ma(NS). Three rats received laser treatment (810 nm; 10 min; 1 W) while the remaining two served as controls (no laser treatment). The uptake ratio of bare to PEGylated AuNS by Ma was 4:1. A significant photothermal effect was observed in vitro, albeit at relatively high radiant exposures (2.1-4.2 kJ cm(-2)). PTT proved effective in vivo in preventing or delaying tumor development in the PTT-treated animals.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Nanoconchas/administração & dosagem , Animais , Linhagem Celular Tumoral , Ouro/química , Hipertermia Induzida , Lasers Semicondutores/uso terapêutico , Macrófagos Alveolares/transplante , Masculino , Nanoconchas/química , Fototerapia , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/química , Resultado do Tratamento
2.
J Biomed Opt ; 19(10): 105009, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25341069

RESUMO

The overall objective of the research was to investigate the utility of photochemical internalization (PCI) for the enhanced nonviral transfection of genes into glioma cells. The PCI-mediated introduction of the tumor suppressor gene phosphatase and tensin homolog (PTEN) or the cytosine deaminase (CD) pro-drug activating gene into U87 or U251 glioma cell monolayers and multicell tumor spheroids were evaluated. In the study reported here, polyamine-DNA gene polyplexes were encapsulated in a nanoparticle (NP) with an acid degradable polyketal outer shell. These NP synthetically mimic the roles of viral capsid and envelope, which transport and release the gene, respectively. The effects of PCI-mediated suppressor and suicide genes transfection efficiency employing either "naked" polyplex cores alone or as NP-shelled cores were compared. PCI was performed with the photosensitizer AlPcS 2a and λ=670-nm laser irradiance. The results clearly demonstrated that the PCI can enhance the delivery of both the PTEN or CD genes in human glioma cell monolayers and multicell tumor spheroids. The transfection efficiency, as measured by cell survival and inhibition of spheroid growth, was found to be significantly greater at suboptimal light and DNA levels for shelled NPs compared with polyamine-DNA polyplexes alone.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Poliaminas/química , Transfecção/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Citosina Desaminase/farmacologia , Portadores de Fármacos/farmacologia , Portadores de Fármacos/toxicidade , Terapia Genética , Humanos , Nanopartículas/toxicidade , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/toxicidade , Poliaminas/farmacologia , Poliaminas/toxicidade , Esferoides Celulares
3.
J Neurooncol ; 118(1): 29-37, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610460

RESUMO

Despite advances in surgery, chemotherapy and radiotherapy, the outcomes of patients with GBM have not significantly improved. Tumor recurrence in the resection margins occurs in more than 80% of cases indicating aggressive treatment modalities, such as gene therapy are warranted. We have examined photochemical internalization (PCI) as a method for the non-viral transfection of the cytosine deaminase (CD) suicide gene into glioma cells. The CD gene encodes an enzyme that can convert the nontoxic antifungal agent, 5-fluorocytosine, into the chemotherapeutic drug, 5-fluorouracil. Multicell tumor spheroids derived from established rat and human glioma cell lines were used as in vitro tumor models. Plasmids containing either the CD gene alone or together with the uracil phosphoribosyl transferase (UPRT) gene combined with the gene carrier protamine sulfate were employed in all experiments.PCI was performed with the photosensitizer AlPcS2a and 670 nm laser irradiance. Protamine sulfate/CD DNA polyplexes proved nontoxic but inefficient transfection agents due to endosomal entrapment. In contrast, PCI mediated CD gene transfection resulted in a significant inhibition of spheroid growth in the presence of, but not in the absence of, 5-FC. Repetitive PCI induced transfection was more efficient at low CD plasmid concentration than single treatment. The results clearly indicate that AlPcS2a-mediated PCI can be used to enhance transfection of a tumor suicide gene such as CD, in malignant glioma cells and cells transfected with both the CD and UPRT genes had a pronounced bystander effect.


Assuntos
Antifúngicos/farmacologia , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Flucitosina/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/patologia , Humanos , Indóis/farmacologia , Compostos Organometálicos/farmacologia , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Processos Fotoquímicos/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Transfecção
4.
Lasers Surg Med ; 46(4): 310-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24648368

RESUMO

BACKGROUND AND OBJECTIVE: Treatment modalities, such as hyperthermia and photodynamic therapy (PDT) have been used in the treatment of a variety of head and neck squamous cell carcinoma (HNSCC), either alone or as an adjuvant therapy. Macrophages loaded with gold nanoshells, which convert near-infrared light to heat, can be used as transport vectors for photothermal hyperthermia of tumors. The purpose of this study was to investigate the effects of combined macrophage mediated photothermal therapy (PTT) and PDT on HNSCC cells. STUDY DESIGN/MATERIALS AND METHODS: Gold nanoshell loaded rat macrophages either alone or combined with human FaDu squamous cells in hybrid monolayers were subjected to PTT, PDT, or a simultaneous combination of the two light treatments. Therapies were given concurrently employing two laser light sources of λ = 670 nm (PDT) and λ = 810 nm (PTT), respectively. RESULTS: Significant uptake of gold nanospheres (AuNS) by rat alveolar macrophages was observed thus providing the rationale for their use as delivery vectors. Viability of the AuNS-loaded Ma was reduced to 35 and 12% of control values at an irradiance of 14 or 28 W/cm(2) administered over a 5 minute period respectively. No significant cytotoxicity was observed for empty Ma for similar PTT exposure. AlPcS2a mediated PDT at a fluence level of 0.25 J/cm(2) and PTT at 14 W/cm(2) irradiance had little effect on cell viability for the FaDu/Ma (ratio 2:1) hybrid monolayers. In contrast, combined treatment reduced the cell viability to less than 40% at these same laser power settings. CONCLUSIONS: The results of this study provide proof of concept for the use of macrophages as a delivery vector of AuNS for photothermal enhancement of the effects of PDT on squamous cell carcinoma. A significant synergy was demonstrated with combined PDT and PTT compared to each modality applied separately.


Assuntos
Carcinoma de Células Escamosas/terapia , Sistemas de Liberação de Medicamentos/métodos , Ouro/uso terapêutico , Neoplasias de Cabeça e Pescoço/terapia , Hipertermia Induzida/métodos , Macrófagos , Nanoconchas/uso terapêutico , Fotoquimioterapia/métodos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Terapia Combinada , Humanos , Indóis/uso terapêutico , Compostos Organometálicos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Ratos , Carcinoma de Células Escamosas de Cabeça e Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...