Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chaos ; 33(3): 031103, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003790

RESUMO

The non-normal nature and transient growth in amplitude and energy of a pitch-plunge aeroelastic system undergoing dynamic stall are explored in this paper through numerical and supporting experimental studies. Wind tunnel experiments, carried out for a canonical pitch-plunge aeroelastic system in a subsonic wind tunnel, show that the system undergoes stall flutter instability via a sub-critical Hopf bifurcation. The aeroelastic responses indicate a transient growth in amplitude and energy-possibly triggering the sub-criticality, which is critical from the purview of structural safety. The system also shows transient energy growth followed by decaying oscillation for certain initial conditions, whereas sustained limit cycle oscillations are encountered for other initial conditions at flow speeds lower than the critical speed. The triggering behavior observed in the wind tunnel experiments is understood better by resorting to study the numerical model of the nonlinear aeroelastic system. To that end, a modified semi-empirical Leishman-Beddoes dynamic stall model is adopted to represent the nonlinear aerodynamic loads of the pitch-plunge aeroelastic system. The underlying linear operator and its pseudospectral analysis indicate that the aeroelastic system is non-normal, causing amplification in amplitude and energy for a short period.

2.
Chaos ; 32(7): 073114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35907747

RESUMO

This study focuses on characterizing the bifurcation scenario and the underlying synchrony behavior in a nonlinear aeroelastic system under deterministic as well as stochastic inflow conditions. Wind tunnel experiments are carried out for a canonical pitch-plunge aeroelastic system subjected to dynamic stall conditions. The system is observed to undergo a subcritical Hopf bifurcation, giving way to large-amplitude limit cycle oscillations (LCOs) in the stall flutter regime under the deterministic flow conditions. At this condition, we observe intermittent phase synchronization between pitch and plunge modes near the fold point, whereas synchronization via phase trapping is observed near the Hopf point. Repeating the experiments under stochastic inflow conditions, we observe two different aeroelastic responses: low amplitude noise-induced random oscillations (NIROs) and high-amplitude random LCOs (RLCOs) during stall flutter. The present study shows asynchrony between pitch and plunge modes in the NIRO regime. At the onset of RLCOs, asynchrony persists even though the relative phase distribution changes. With further increase in the flow velocity, we observe intermittent phase synchronization in the flutter regime. To the best of the authors' knowledge, this is the first study reporting the experimental evidence of phase synchronization between pitch and plunge modes of an aeroelastic system, which is of great interest to the nonlinear dynamics community. Furthermore, given the ubiquitous presence of stall behavior and stochasticity in a variety of engineering systems, such as wind turbine blades, helicopter blades, and unmanned aerial vehicles, the present findings will be directly beneficial for the efficient design of futuristic aeroelastic systems.


Assuntos
Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...